Skip to main content
Log in

Structural and Functional Properties, Biosynthesis, and Patenting Trends of Bacterial Succinoglycan: A Review

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The exopolysaccharide succinoglycan is produced mainly by a large number of soil microbes of Agrobacterium, Rhizobium or Pseudomonas genera etc. Structural properties of succinoglycan are unique in terms of its thermal stability and superior viscosifying property. Unlike the other highly commercialized bacterial exopolysaccharides like dextran or xanthan, mass scale application of succinoglycan has not been that much broadly explored yet. Bacterial succinoglycan is found suitable as a viscosifying and emulsifying agent in food industry, in gravel packing or fluid-loss control agent etc. In this present review, the key aspects of succinoglycan study, in particular, developments in structural characterizations, exo/exs operon system involved in biosynthesis pathway, commercial applications in food and other industries and patenting trends have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Harada T (1965) Succinoglucan 10C3: a new acidic polysaccharide of Alcaligenes faecalis var. myxogenes. Arch Biochem Biophys 112:65–69. doi:10.1016/0003-9861(65)90010-X

    Article  CAS  PubMed  Google Scholar 

  2. Lee S, Kwon S, Kwon C, Jung S (2009) Low-energy collision-activated dissociation electrospray ionization tandem mass spectrometric analysis of Sinorhizobial succinoglycan monomers. Carbohydr Res 344:1127–1129. doi:10.1016/j.carres.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  3. Simsek S, Mert B, Campanella OH, Reuhs B (2009) Chemical and rheological properties of bacterial succinoglycan with distinct structural characteristics. Carbohydr Polym 76:320–324. doi:10.1016/j.carbpol.2008.10.033

    Article  CAS  Google Scholar 

  4. Stredansky M, Conti E, Bertocchi C, Matulova M, Zanetti F (1998) Succinoglycan production by Agrobacterium tumefaciens. J Ferment Bioeng 85:398–403. doi:10.1016/S0922-338X(98)80083-4

    Article  CAS  Google Scholar 

  5. Hisamatsu M, Abe JI, Amemura A, Harada T (1980) Structural elucidation on succinoglycan and related polysaccharides from Agrobacterium and Rhizobium by fragmentation with two special β-d-glycanases and methylation analysis. Agric Biol Chem 44:1049–1055. doi:10.1271/bbb1961.44.1049

    CAS  Google Scholar 

  6. Andhare P, Delattre D, Pierre G, Michaud P, Pathak H (2017) Characterization and rheological behaviour analysis of the succinoglycan produced by Rhizobium radiobacter strain CAS from curd sample. Food Hydrocoll 64:1–8. doi:10.1016/j.foodhyd.2016.10.008

    Article  CAS  Google Scholar 

  7. Kwon C, Lee S, Jung S (2011) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric behavior of succinoglycan monomers, dimers, and trimers isolated from Sinorhizobium meliloti 1021. Carbohydr Res 346:2308–2314. doi:10.1016/j.carres.2011.07.023

    Article  CAS  PubMed  Google Scholar 

  8. Hawkins JP, Oresnik IJ (2017) Characterization of a gene encoding a membrane protein that affects exopolysaccharide production and intracellular Mg2+ concentrations in Ensifer meliloti. FEMS Microbiol Lett 364:fnx061. doi:10.1093/femsle/fnx061

    Article  Google Scholar 

  9. Gravanis G, Milas M, Rinaudo M, Clarke-Sturman AJ (1990) Conformational transition and polyelectrolyte behaviour of a succinoglycan polysaccharide. Int J Biol Macromol 12:195–200. doi:10.1016/0141-8130(90)90033-7

    Article  CAS  PubMed  Google Scholar 

  10. Morris VJ, Brownsey GJ, Gunning AP, Harris JE (1990) Gelation of the extracellular polysaccharide produced by Agrobacterium rhizogenes. Carbohydr Polym 13:221–225. doi:10.1016/0144-8617(90)90085-7

    Article  CAS  Google Scholar 

  11. Cao Y, Dickinson E, Wedlock DJ (1990) Creaming and flocculation in emulsions containing polysaccharide. Food Hydrocoll 4:185–195. doi:10.1016/S0268-005X(09)80151-3

    Article  CAS  Google Scholar 

  12. Dickinson E (1994) Emulsion stability. Food hydrocolloids. Springer, New York, pp 387–398. doi:10.1007/978-1-4615-2486-1_61

    Book  Google Scholar 

  13. Sathiyanarayanan G, Dineshkumar K, Yang YH (2017) Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles. Crit Rev Microbiol 43:1–22. doi:10.1080/1040841X.2017.1306689

    Article  Google Scholar 

  14. Banerjee A, Halder U, Bandopadhyay R (2017) Preparations and applications of polysaccharide based green synthesized metal nanoparticles: a state-of-the-art. J Clust Sci 28:1–11. doi:10.1007/s10876-017-1219-8

    Article  Google Scholar 

  15. Misaki A, Saito H, Ito T, Harada T (1969) Structure of succinoglucan and exocellular acidic polysaccharide of Alcaligenes faecalis var myxogenes. Biochemistry 8:4645–4650

    Article  CAS  PubMed  Google Scholar 

  16. Freitas F, Alves VD, Reis MA (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398. doi:10.1016/j.tibtech.2011.03.008

    Article  CAS  PubMed  Google Scholar 

  17. Balnois E, Stoll S, Wilkinson KJ, Buffle J, Rinaudo M, Milas M (2000) Conformations of succinoglycan as observed by atomic force microscopy. Macromolecules 33:7440–7447. doi:10.1021/ma0002951

    Article  CAS  Google Scholar 

  18. Bakhtiyari M, Moosavi-Nasab M, Askari H (2015) Optimization of succisnoglycan hydrocolloid production by Agrobacterium radiobacter grown in sugar beet molasses and investigation of its physicochemical characteristics. Food Hydrocoll 45:18–29. doi:10.1016/j.foodhyd.2014.11.002

    Article  CAS  Google Scholar 

  19. Hill RJ (2016) On the electrophoretic mobility of succinoglycan modelled as a spherical polyelectrolyte: from Hermans–Fujita theory to charge regulation in multi-component electrolytes. J Colloid Interface Sci 482:131–134. doi:10.1016/j.jcis.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  20. Kang S, Lee S, Kyung S, Jung S (2006) Catalytic methanolysis induced by succinoglycan, a Rhizobial exopolysaccharide. Bull Korean Chem Soc 27:921

    Article  CAS  Google Scholar 

  21. Matulova M, Toffanin R, Navarini L, Gilli R, Paoletti S, Cesaro A (1994) NMR analysis of succinoglycans from different microbial sources: partial assignment of their 1H and 13C NMR spectra and location of the succinate and the acetate groups. Carbohydr Res 265:167–179. doi:10.1016/0008-6215(94)00227-4

    Article  CAS  PubMed  Google Scholar 

  22. Simsek S, Wood K, Reuhs BL (2013) Structural analysis of succinoglycan oligosaccharides from Sinorhizobium meliloti strains with different host compatibility phenotypes. J Bacteriol 195:2032–2038. doi:10.1128/JB.00009-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Medeot DB, Rivero MR, Cendoya E, Contreras-Moreira B, Rossi FA, Fischer SE, Becker A, Jofré E (2016) Sinorhizobium meliloti low molecular mass phosphotyrosine phosphatase SMc02309 modifies activity of the UDP-glucose pyrophosphorylaseExoN involved in succinoglycan biosynthesis. Microbiology 162:552–563. doi:10.1099/mic.0.000239

    Article  CAS  PubMed  Google Scholar 

  24. Wu D, Li A, Ma F, Yang J, Xie Y (2016) Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium. Appl Microbiol Biotechnol 100:6183–6192. doi:10.1007/s00253-016-7650-1

    Article  CAS  PubMed  Google Scholar 

  25. Mendis HC, Madzima TF, Queiroux C, Jones KM (2016) Function of succinoglycan polysaccharide in Sinorhizobium meliloti host plant invasion depends on succinylation, not molecular weight. mBio 7:00606–00616. doi:10.1128/mBio.00606-16

    Article  Google Scholar 

  26. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobialsymbionts invade plants: the Sinorhizobium–Medicago model. Nat Rev Microbiol 5:619–633. doi:10.1038/nrmicro1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Skorupska A, Janczarek M, Marczak M, Mazur A, Król J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 5:7. doi:10.1186/1475-2859-5-7

    Article  PubMed  PubMed Central  Google Scholar 

  28. Janczarek M, Rachwał K, Kopcińska J (2015) Genetic characterization of the Pss region and the role of PssS in exopolysaccharide production and symbiosis of Rhizobium leguminosarum bv. trifolii with clover. Plant Soil 396:257–275. doi:10.1007/s11104-015-2567-5

    Article  CAS  Google Scholar 

  29. Becker A (2015) Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways. Front Microbiol 6:687. doi:10.3389/fmicb.2015.00687

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ridout MJ, Brownsey GJ, York GM, Walker GC, Morris VJ (1997) Effect of o-acyl substituents on the functional behaviour of Rhizobium meliloti succinoglycan. Int J Biol Macromol 20:1–7. doi:10.1016/S0141-8130(96)01140-3

    Article  CAS  PubMed  Google Scholar 

  31. Cho E, Choi JM, Kim H, Tahir MN, Choi Y, Jung S (2013) Ferrous iron chelating property of low-molecular weight succinoglycans isolated from Sinorhizobium meliloti. Biometals 26:321–328. doi:10.1007/s10534-013-9615-5

    Article  CAS  PubMed  Google Scholar 

  32. Banerjee A, Bandopadhyay R (2016) Use of dextran nanoparticle: a paradigm shift in bacterial exopolysaccharide based biomedical applications. Int J Biol Macromol 87:295–301. doi:10.1016/j.ijbiomac.2016.02.059

    Article  CAS  PubMed  Google Scholar 

  33. Yun D, Cho E, Dindulkar SD, Jung S (2016) Succinoglycan octasaccharide conjugated polydiacetylene-doped alginate beads for barium (II) detection. Macromol Mater Eng 301:805–811. doi:10.1002/mame.201600060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to UGC-Centre of Advanced Study, Department of Botany, The University of Burdwan for pursuing research activities and Relecura patent search tool for patented documents analysis. Aparna Banerjee is also thankful for the financial assistance of SRF (State Funded) [Fc (Sc.)/RS/SF/BOT./2014-15/103 (3)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Bandopadhyay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Supplementary material 2 (DOCX 858 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, U., Banerjee, A. & Bandopadhyay, R. Structural and Functional Properties, Biosynthesis, and Patenting Trends of Bacterial Succinoglycan: A Review. Indian J Microbiol 57, 278–284 (2017). https://doi.org/10.1007/s12088-017-0655-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0655-3

Keywords

Navigation