Skip to main content

Exopolysaccharides from Lactic Acid Bacteria

  • Reference work entry
  • First Online:
Polysaccharides of Microbial Origin
  • 1335 Accesses

Abstract

Lactic acid bacteria (LAB) are continuously arousing interest for their capacity to produce extracellular polysaccharides (EPS) without any health risks owing to their GRAS status. EPS have been found to be associated with multiple functions in microbial cells, essentially the protection of the microbial cells against both biotic and abiotic stress factors. Apart from their physiological roles, the wide diversity of the composition and functionality of EPS from LAB is broadening their industrial applications including pharmaceutical, cosmetic, medical, environmental, and food products. Structural features of EPS such as chain length, sugar composition, sugar linkages type, and the presence of substitutions may considerably affect their biological and technological properties. Indeed, EPS from LAB have extensively gained attention for their biological activities such as hypocholesterolemic, immunomodulatory, antioxidant, and antitumor activities. In addition, EPS from LAB have been applied as viscosity increasing agents, thickeners, gelling agents, emulsifiers, and stabilizers. Particularly, in the food industry, interactions between EPS and proteins are receiving rising interest since they demonstrated an ability to better control the texture and stability of food systems. Research development is constantly interested in the isolation, characterization, and applications of novel EPS as renewable resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abid Y, Casillo A, Gharsallah H, et al. Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. Int J Biol Macromol. 2018a;108:719–28.

    Article  CAS  PubMed  Google Scholar 

  • Abid Y, Joulak I, Ben Amara C, et al. Study of interactions between anionic exopolysaccharides produced by newly isolated probiotic bacteria and sodium caseinate. Colloids Surf B: Biointerfaces. 2018b;167:516–23.

    Article  CAS  PubMed  Google Scholar 

  • Abid Y, Gharsallaoui A, Dumas E, et al. Spray-drying microencapsulation of nisin by complexation with exopolysaccharides produced by probiotic Bacillus tequilensis-GM and Leuconostoc citreum-BMS. Colloids Surf B: Biointerfaces. 2019;181:25–30.

    Article  CAS  PubMed  Google Scholar 

  • Alves VD, Freitas F, Costa N, et al. Effect of temperature on the dynamic and steady-shear rheology of a new microbial extracellular polysaccharide produced from glycerol byproduct. Carbohydr Polym. 2010;79:981–8.

    Article  CAS  Google Scholar 

  • Amspacher WH, Curreri AR. Use of dextran in control of shock resulting from war wounds. AMA Arch Surg. 1953;66:730–40.

    Article  CAS  PubMed  Google Scholar 

  • Badel S, Bernardi T, Michaud P. New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv. 2011;29:54–66.

    Article  CAS  PubMed  Google Scholar 

  • Begley M, Hill C, Gahan CGM. Bile salt hydrolase activity in probiotics. Appl Environ Microbiol. 2006;72:1729–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corredig M, Sharafbafi N, Kristo E. Polysaccharide-protein interactions in dairy matrices, control and design of structures. Food Hydrocoll. 2011;25:1833–41.

    Article  CAS  Google Scholar 

  • De Vuyst L, Degeest B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev. 1999;23:153–77.

    Article  PubMed  Google Scholar 

  • Di Cagno R, Surico RF, Paradiso A, et al. Effect of autochthonous lactic acid bacteria starters on health-promoting and sensory properties of tomato juices. Int J Food Microbiol. 2009;128:473–83.

    Article  PubMed  Google Scholar 

  • Dilna SV, Surya H, Aswathy RG, et al. Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT Food Sci Technol. 2015;64:1179–86.

    Article  CAS  Google Scholar 

  • Dische Z, Shettles LB. A specific color reaction of methylpentoses and a spectrophotometric micromethod for their determination. J Biol Chem. 1948;175:595–603.

    Article  CAS  PubMed  Google Scholar 

  • Donot F, Fontana A, Baccou JC, et al. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym. 2012;87:951–62.

    Article  CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–6.

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33.

    Article  CAS  PubMed  Google Scholar 

  • Freitas F, Alves VD, Reis MAM. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol. 2011;29:388–98.

    Article  CAS  PubMed  Google Scholar 

  • Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens. 2013;3:14–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh AK, Bandyopadhyay P. Polysaccharide-protein interactions and their relevance in food colloids. In: Karunaratne DN, editor. The complex world of polysaccharides. London: IntechOpen; 2012. p. 395–408.

    Google Scholar 

  • Girard M, Schaffer-Lequart C. Gelation and resistance to shearing of fermented milk: role of exopolysaccharides. Int Dairy J. 2007;17:666–73.

    Google Scholar 

  • Hassan AN. ADSA Foundation Scholar Award: possibilities and challenges of exopolysaccharide-producing lactic cultures in dairy foods. J Dairy Sci. 2008;91:1282–98.

    Article  CAS  PubMed  Google Scholar 

  • Hongpattarakere T, Cherntong N, Wichienchot S, et al. In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydr Polym. 2012;87:846–52.

    Google Scholar 

  • Huang MY, Lee CF, Ho ST, et al. High-yield levan produced by Bacillus licheniformis FRI MY-55 in high-sucrose medium and its prebiotic effect. J Pure Appl Microbiol. 2013;7:1585–99.

    CAS  Google Scholar 

  • Ishimwe N, Daliri EB, Lee BH, et al. The perspective on cholesterol-lowering mechanisms of probiotics. Mol Nutr Food Res. 2015;59:94–105.

    Article  CAS  PubMed  Google Scholar 

  • Jindal N, Singh DP, Khattar JIS. Kinetics and physico-chemical characterization of exopolysaccharides produced by the cyanobacterium Oscillatoria formosa. World J Microbiol Biotechnol. 2011;27:2139–46.

    Article  CAS  Google Scholar 

  • Juvonen R, Honkapää K, Maina NH, et al. The impact of fermentation with exopolysaccharide producing lactic acid bacteria on rheological, chemical and sensory properties of pureed carrots (Daucus carota L.). Int J Food Microbiol. 2015;207:109–18.

    Article  CAS  PubMed  Google Scholar 

  • Kambourova M, Oner ET, Poli A. Exopolysaccharides from prokaryotic microorganisms – promising sources for white biotechnology processes. In: Pandey A, Hofer R, Taherzadeh M, et al., editors. Industrial biorefineries and white biotechnology. Amsterdam: Elsevier; 2015. p. 523–54.

    Chapter  Google Scholar 

  • Leroy F, De Vuyst L. Advances in production and simplified methods for recovery and quantification of exopolysaccharides for applications in food and health. J Dairy Sci. 2016;99:3229–38.

    Article  CAS  PubMed  Google Scholar 

  • Lindstrom C, Holst O, Nilsson L, et al. Effects of Pediococcus parvulus 2.6 and its exopolysaccharide on plasma cholesterol levels and inflammatory markers in mice. AMB Express. 2012;2:66–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Luo J, Ye H, et al. Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food Chem Toxicol. 2012;50:767–72.

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    Article  CAS  PubMed  Google Scholar 

  • Lynch KM, Coffey A, Arendt EK. Exopolysaccharide producing lactic acid bacteria: their techno-functional role and potential application in gluten-free bread products. Food Res Int. 2018;110:52–61.

    Article  CAS  PubMed  Google Scholar 

  • Maalej H, Hmidet N, Boisset C, et al. Rheological and emulsifying properties of a gel-like exopolysaccharide produced by Pseudomonas stutzeri AS22. Food Hydrocoll. 2016;52:634–47.

    Article  CAS  Google Scholar 

  • McClements D. Food emulsions. USA: CRC Press; 2016.

    Google Scholar 

  • Mende S, Rohm H, Jaros D. Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products. Int Dairy J. 2016;52:57–71.

    Article  CAS  Google Scholar 

  • More TT, Yadav JSS, Yan S, et al. Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manag. 2014;144:1–25.

    Article  CAS  Google Scholar 

  • Morris G, Harding S. Polysaccharides, microbial. In: Schaechter M, editor. Encyclopedia of microbiology. San Diego: Academic; 2009. p. 482–94.

    Chapter  Google Scholar 

  • Pan D, Mei X. Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12. Carbohydr Polym. 2010;80:908–14.

    Article  CAS  Google Scholar 

  • Pan D, Liu J, Zeng X, et al. Immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. Lactis. Food Agric Immunol. 2015;26:248–59.

    Article  CAS  Google Scholar 

  • Patel A, Prajapat JB. Food and health applications of exopolysaccharides produced by lactic acid bacteria. Adv Dairy Res. 2013;1:107–14.

    Google Scholar 

  • Pérez-Ramos A, Mohedano ML, Pardo MÁ, et al. β-Glucan-producing Pediococcus parvulus 2.6: test of probiotic and immunomodulatory properties in zebrafish models. Front Microbiol. 2018;9:1684–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasanna PHP, Bell A, Grandison AS, et al. Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205. Carbohydr Polym. 2012;90:533–40.

    Article  CAS  PubMed  Google Scholar 

  • Roberfroid M. Prebiotics: the concept revisited. J Nutr. 2007;137:830S–7S.

    Article  CAS  PubMed  Google Scholar 

  • Ruas-Madiedo P, Reyes-Gavilan CGDL. Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci. 2005;88:843–56.

    Article  CAS  PubMed  Google Scholar 

  • Ryan PM, Ross RP, Fitzgerald GF, et al. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food Funct. 2015;6:679–93.

    Article  CAS  PubMed  Google Scholar 

  • Srikanth R, Reddy CHSSS, Siddartha G, et al. Review on production, characterization and applications of microbial levan. Carbohydr Polym. 2015;120:102–14.

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Li W, Rui X, et al. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int J Biol Macromol. 2014;63:133–9.

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Li W, Rui X, et al. Chemical modification, characterization and bioactivity of a released exopolysaccharide (r-EPS1) from Lactobacillus plantarum 70810. Glycoconj J. 2015;32:17–27.

    Article  PubMed  Google Scholar 

  • Zannini E, Waters DM, Coffey A, et al. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol. 2016;100:1121–35.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Cao Y, Wang J, et al. Physicochemical characteristics and bioactivities of the exopolysaccharide and its sulphated polymer from Streptococcus thermophilus GST-6. Carbohydr Polym. 2016;146:368–75.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Cui Y, Qu X. Exopolysaccharides of lactic acid bacteria: structure, bioactivity and associations: a review. Carbohydr Polym. 2019;207:317–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abid, Y., Azabou, S. (2022). Exopolysaccharides from Lactic Acid Bacteria. In: Oliveira, J.M., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-42215-8_26

Download citation

Publish with us

Policies and ethics