Skip to main content

Exopolysaccharides in Food Processing Industrials

  • Chapter
  • First Online:
Microbial Exopolysaccharides as Novel and Significant Biomaterials

Abstract

Microbial exopolysaccharides are a class of extracellular carbohydrates based on biopolymeric materials produced and secreted by bacteria, yeast, molds, and microalgae. Cellulose, pullulan, xanthan gum, dextran, kefiran, curdlan, emulsan, alginate, gellan, carrageenans, hyaluronic acid, levan, colanic acid, welan, glucuronides, succinoglycans, and mutan are the exopolysaccharides (EPSs) of different microbial origin. Most of the available EPSs are non-toxic, biocompatible, biodegradable, and obtain from renewable resources. Microbial EPSs display unique functional properties due to their nature and structural composition. The demand for natural microbial EPSs utilization in the food industry due to their unique properties, including emulsifier, gelling agent, and stabilizers. Microbial EPSs and their derivatives have found a wide range of applications in food systems, including fermented dairy products, bakery products, cereal-based products, beverages, delivery of active agents, coatings, and films. This chapter will present a comprehensive overview of the recent developments of EPSs and their potential utilization in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Fattah AM, Gamal-Eldeen AM, Helmy WA, Esawy MA (2012) Antitumor and antioxidant activities of levan and its derivative from the isolate Bacillus subtilis NRC1aza. Carbohydr Polym 89:314–322. https://doi.org/10.1016/j.carbpol.2012.02.041

    Article  CAS  PubMed  Google Scholar 

  2. Adepu S, Khandelwal M (2018) Broad-spectrum antimicrobial activity of bacterial cellulose silver nanocomposites with sustained release. J Mater Sci 53:1596–1609. https://doi.org/10.1007/s10853-017-1638-9

    Article  CAS  Google Scholar 

  3. Arserim-Uçar DK, Korel F, Liu LS, Yam KL (2021) Characterization of bacterial cellulose nanocrystals: effect of acid treatments and neutralization. Food Chem 336:127597. https://doi.org/10.1016/j.foodchem.2020.127597

  4. Arserim-Uçar DK (2020) Nanocontainers for food safety. In: Smart Nanocontainers, pp 105–117. Elsevier. https://doi.org/10.1016/B978-0-12-816770-0.00007-1

  5. Arserim-Uçar DK, Çabuk B (2020) Emerging antibacterial and antifungal applications of nanomaterials on food products. In: Nanotoxicity, pp 415–453. Elsevier. https://doi.org/10.1016/B978-0-12-819943-5.00027-0

  6. Arvidson SA, Rinehart BT, Gadala-Maria F (2006) Concentration regimes of solutions of levan polysaccharide from Bacillus sp. Carbohydr Polym 65:144–149. https://doi.org/10.1016/j.carbpol.2005.12.039

    Article  CAS  Google Scholar 

  7. Azarakhsh N, Osman A, Ghazali HM et al (2014) Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biol Technol 88:1–7. https://doi.org/10.1016/j.postharvbio.2013.09.004

    Article  CAS  Google Scholar 

  8. Azeredo HMC, Barud H, Farinas CS et al (2019) Bacterial cellulose as a raw material for food and food packaging applications. Front Sustain Food Syst 3:7. https://doi.org/10.3389/fsufs.2019.00007

    Article  Google Scholar 

  9. Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Ind Crops Prod 97:664–671. https://doi.org/10.1016/j.indcrop.2016.03.013

    Article  CAS  Google Scholar 

  10. BahramParvar M, Tehrani MM, Razavi SMA (2013) Effects of a novel stabilizer blend and presence of κ-carrageenan on some properties of vanilla ice cream during storage. Food Biosci 3:10–18. https://doi.org/10.1016/j.fbio.2013.05.001

    Article  CAS  Google Scholar 

  11. Bandyopadhyay S, Saha N, Brodnjak UV, Sáha P (2019) Bacterial cellulose and guar gum based modified PVP-CMC hydrogel films: characterized for packaging fresh berries. Food Packag Shelf Life 22:100402. https://doi.org/10.1016/j.fpsl.2019

  12. Barcelos MCS, Vespermann KAC, Pelissari FM, Molina G (2020) Current status of biotechnological production and applications of microbial exopolysaccharides. Crit Rev Food Sci Nutr 60:1475–1495. https://doi.org/10.1080/10408398.2019.1575791

    Article  CAS  PubMed  Google Scholar 

  13. Baruah R, Maina NH, Katina K et al (2017) Functional food applications of dextran from Weissella cibaria RBA12 from pummelo (Citrus maxima). Int J Food Microbiol 242:124–131. https://doi.org/10.1016/j.ijfoodmicro.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  14. Bejar W, Gabriel V, Amari M et al (2013) Characterization of glucansucrase and dextran from Weissella sp. TN610 with potential as safe food additives. Int J Biol Macromol 52:125–132. https://doi.org/10.1016/j.ijbiomac.2012.09.014

    Article  CAS  PubMed  Google Scholar 

  15. Boonlao N, Shrestha S, Sadiq MB, Anal AK (2020) Influence of whey protein-xanthan gum stabilized emulsion on stability and in vitro digestibility of encapsulated astaxanthin. J Food Eng 272:109859. https://doi.org/10.1016/j.jfoodeng.2019.109859

  16. Boyd A, Chakrabarty AM (1995) Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol 15:162–168. https://doi.org/10.1007/BF01569821

    Article  CAS  PubMed  Google Scholar 

  17. Brodnjak UV (2017) Experimental investigation of novel curdlan/chitosan coatings on packaging paper. Prog Org Coatings 112:86–92. https://doi.org/10.1016/j.porgcoat.2017.06.030

    Article  CAS  Google Scholar 

  18. Bylaite E, Ilgunaité Ž, Meyer AS, Adler-Nissen J (2004) Influence of λ-carrageenan on the release of systematic series of volatile flavor compounds, from viscous food model systems. J Agric Food Chem 52:3542–3549. https://doi.org/10.1021/jf0354996

    Article  CAS  PubMed  Google Scholar 

  19. Cao L, Lu W, Mata A et al (2020) Egg-box model-based gelation of alginate and pectin: a review. Carbohydr Polym 242:116389. https://doi.org/10.1016/j.carbpol.2020.116389

  20. Castro GR, Chen J, Panilaitis B, Kaplan DL (2009) Emulsan-alginate beads for protein adsorption. J Biomater Sci Polym Ed 20:411–426. https://doi.org/10.1163/156856209X416449

    Article  CAS  PubMed  Google Scholar 

  21. Catley BJ (1970) Pullulan, a relationship between molecular weight and fine structure. FEBS Lett 10:190–193. https://doi.org/10.1016/0014-5793(58)80450-1

    Article  CAS  PubMed  Google Scholar 

  22. Chen L, Tian Y, Zhang Z et al (2017) Effect of pullulan on the digestible, crystalline and morphological characteristics of rice starch. Food Hydrocoll 63:383–390. https://doi.org/10.1016/j.foodhyd.2016.09.021

    Article  CAS  Google Scholar 

  23. Chen L, Tong Q, Ren F, Zhu G (2014) Pasting and rheological properties of rice starch as affected by pullulan. Int J Biol Macromol 66:325–331. https://doi.org/10.1016/j.ijbiomac.2014.02.052

    Article  CAS  PubMed  Google Scholar 

  24. Chen L, Zhang H, McClements DJ et al (2019) Effect of dietary fibers on the structure and digestibility of fried potato starch: a comparison of pullulan and pectin. Carbohydr Polym 215:47–57. https://doi.org/10.1016/j.carbpol.2019.03.046

    Article  CAS  PubMed  Google Scholar 

  25. Chen Y, Wang F (2020) Review on the preparation, biological activities and applications of curdlan and its derivatives. Eur Polym J 110096. https://doi.org/10.1016/j.eurpolymj.2020.110096

  26. Chevalier Y, Bolzinger MA (2013) Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids Surfaces A Physicochem Eng Asp 439:23–34. https://doi.org/10.1016/j.colsurfa.2013.02.054

    Article  CAS  Google Scholar 

  27. Cho HM, Yoo B (2015) Rheological characteristics of cold thickened beverages containing xanthan gum e based food thickeners used for dysphagia diets. J Acad Nutr Diet 115:106–111. https://doi.org/10.1016/j.jand.2014.08.028

    Article  PubMed  Google Scholar 

  28. Choi SM, Shin EJ (2020) The nanofication and functionalization of bacterial cellulose and its applications. Nanomaterials 10:406. https://doi.org/10.3390/nano10030406

    Article  CAS  PubMed Central  Google Scholar 

  29. Chu Y, Gao CC, Liu X et al (2020) Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. LWT Food Sci Technol 122:109054. https://doi.org/10.1016/j.lwt.2020.109054

  30. Chuysinuan P, Thanyacharoen T, Thongchai K et al (2020) Preparation of chitosan/hydrolyzed collagen/hyaluronic acid based hydrogel composite with caffeic acid addition. Int J Biol Macromol 162:1937–1943. https://doi.org/10.1016/j.ijbiomac.2020.08.139

    Article  CAS  PubMed  Google Scholar 

  31. Cofelice M, Lopez F, Cuomo F (2019) Quality control of fresh-cut apples after coating application. Foods 8:189. https://doi.org/10.3390/foods8060189

    Article  CAS  PubMed Central  Google Scholar 

  32. Costa AFS, Almeida FCG, Vinhas GM, Sarubbo LA (2017) Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front Microbiol 8:2027. https://doi.org/10.3389/fmicb.2017.02027

    Article  PubMed  PubMed Central  Google Scholar 

  33. Castro C, Zuluaga R, Putaux JL et al (2011). Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polyme 84:96–102. https://doi.org/10.1016/j.carbpol.2010.10.072

  34. Dabestani M, Yeganehzad S (2019) Effect of Persian gum and Xanthan gum on foaming properties and stability of pasteurized fresh egg white foam. Food Hydrocoll 87:550–560. https://doi.org/10.1016/j.foodhyd.2018.08.030

    Article  CAS  Google Scholar 

  35. Dadashi S, Boddohi S, Soleimani N (2019) Preparation, characterization, and antibacterial effect of doxycycline loaded kefiran nanofibers. J Drug Deliv Sci Technol 52:979–985. https://doi.org/10.1016/j.jddst.2019.06.012

    Article  CAS  Google Scholar 

  36. Dahech I, Belghith KS, Hamden K et al (2011) Antidiabetic activity of levan polysaccharide in alloxan-induced diabetic rats. Int J Biol Macromol 49:742–746. https://doi.org/10.1016/j.ijbiomac.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  37. Danalache F, Beirão-da-Costa S, Mata P et al (2015) Texture, microstructure and consumer preference of mango bars jellified with gellan gum. LWT Food Sci Technol 62:584–591. https://doi.org/10.1016/j.lwt.2014.12.040

    Article  CAS  Google Scholar 

  38. Das S, Vishakha K, Banerjee S et al (2020) Sodium alginate-based edible coating containing nanoemulsion of Citrus sinensis essential oil eradicates planktonic and sessile cells of food-borne pathogens and increased quality attributes of tomatoes. Int J Biol Macromol 162:1770–1779. https://doi.org/10.1016/j.ijbiomac.2020.08.086

    Article  CAS  PubMed  Google Scholar 

  39. Davidović S, Miljković M, Tomić M et al (2018) Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3. Carbohydr Polym 184:207–213. https://doi.org/10.1016/j.carbpol.2017.12.061

    Article  CAS  PubMed  Google Scholar 

  40. de Siqueira EC, de Rebouças JS, Pinheiro IO, Formiga FR (2020) Levan-based nanostructured systems: an overview. Int J Pharm 580:119242. https://doi.org/10.1016/j.ijpharm.2020

  41. Demirci AS, Palabiyik I, Apaydın D et al (2019) Xanthan gum biosynthesis using Xanthomonas isolates from waste bread: process optimization and fermentation kinetics. LWT Food Sci Technol 101:40–47. https://doi.org/10.1016/j.lwt.2018.11.018

    Article  CAS  Google Scholar 

  42. Dobosz A, Sikora M, Krystyjan M et al (2020) Influence of xanthan gum on the short- and long-term retrogradation of potato starches of various amylose content. Food Hydrocoll 102:105618. https://doi.org/10.1016/j.foodhyd.2019

  43. Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962. https://doi.org/10.1016/j.carbpol.2011.08.083

    Article  CAS  Google Scholar 

  44. Du R, Qiao X, Zhao F et al (2018) Purification, characterization and antioxidant activity of dextran produced by Leuconostoc pseudomesenteroides from homemade wine. Carbohydr Polym 198:529–536. https://doi.org/10.1016/j.carbpol.2018.06.116

    Article  CAS  PubMed  Google Scholar 

  45. Du R, Xing H, Yang Y et al (2017) Optimization, purification and structural characterization of a dextran produced by L. mesenteroides isolated from Chinese sauerkraut. Carbohydr Polym 174:409–416. https://doi.org/10.1016/j.carbpol.2017.06.084

    Article  CAS  PubMed  Google Scholar 

  46. Eckel VPL, Vogel RF, Jakob F (2019) In situ production and characterization of cloud forming dextrans in fruit-juices. Int J Food Microbiol 306:108261. https://doi.org/10.1016/j.ijfoodmicro.2019.108261

  47. Encina-Zelada CR, Cadavez V, Monteiro F et al (2018) Combined effect of xanthan gum and water content on physicochemical and textural properties of gluten-free batter and bread. Food Res Int 111:544–555. https://doi.org/10.1016/j.foodres.2018.05.070

    Article  CAS  PubMed  Google Scholar 

  48. Espert M, Constantinescu L, Sanz T, Salvador A (2019) Food Hydrocolloids Effect of xanthan gum on palm oil in vitro digestion. Application in starch-based fi lling creams. Food Hydrocoll 86:87–94. https://doi.org/10.1016/j.foodhyd.2018.02.017

    Article  CAS  Google Scholar 

  49. Fabra MJ, López-Rubio A, Ambrosio-Martín J, Lagaron JM (2016) Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocoll 61:261–268. https://doi.org/10.1016/j.foodhyd.2016.05.025

    Article  CAS  Google Scholar 

  50. Farias TGS de, Ladislau HFL, Stamford TCM et al (2019) Viabilities of Lactobacillus rhamnosus ASCC 290 and Lactobacillus casei ATCC 334 (in free form or encapsulated with calcium alginate-chitosan) in yellow mombin ice cream. LWT Food Sci Technol 100:391–396. https://doi.org/10.1016/j.lwt.2018.10.084

  51. Fels L, Jakob F, Vogel RF, Wefers D (2018) Structural characterization of the exopolysaccharides from water kefir. Carbohydr Polym 189:296–303. https://doi.org/10.1016/j.carbpol.2018.02.037

    Article  CAS  PubMed  Google Scholar 

  52. Fernando IPS, Lee WW, Han EJ, Ahn G (2020) Alginate-based nanomaterials: fabrication techniques, properties, and applications. Chem Eng J 391:123823. https://doi.org/10.1016/j.cej.2019.123823

  53. Foerster M, Liu C, Gengenbach T et al (2017) Reduction of surface fat formation on spray-dried milk powders through emulsion stabilization with λ-carrageenan. Food Hydrocoll 70:163–180. https://doi.org/10.1016/j.foodhyd.2017.04.005

    Article  CAS  Google Scholar 

  54. Frank K, Garcia CV, Shin GH, Kim JT (2018) Alginate biocomposite films incorporated with cinnamon essential oil nanoemulsions: physical, mechanical, and antibacterial properties. Int J Polym Sci 2018:1519407. https://doi.org/10.1155/2018/1519407

    Article  CAS  Google Scholar 

  55. Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398. https://doi.org/10.1016/j.tibtech.2011.03.008

    Article  CAS  PubMed  Google Scholar 

  56. Funami T, Yada H, Nakao Y (1998) Curdlan properties for application in fat mimetics for meat products. J Food Sci 63:283–287. https://doi.org/10.1111/j.1365-2621.1998.tb15727.x

    Article  CAS  Google Scholar 

  57. Gao G, Fan H, Zhang Y et al (2021) Production of nisin-containing bacterial cellulose nanomaterials with antimicrobial properties through co-culturing Enterobacter sp. FY-07 and Lactococcus lactis N8. Carbohydr Polym 251:117131. https://doi.org/10.1016/j.carbpol.2020

  58. Gao H, Xie F, Zhang W et al (2020) Characterization and improvement of curdlan produced by a high-yield mutant of Agrobacterium sp. ATCC 31749 based on whole-genome analysis. Carbohydr Polym 245:116486. https://doi.org/10.1016/j.carbpol.2020

  59. George J, Kumar R, Sajeevkumar VA et al (2014) Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 105:285–292. https://doi.org/10.1016/j.carbpol.2014.01.057

    Article  CAS  PubMed  Google Scholar 

  60. George J, Ramana KV, Bawa AS, Siddaramaiah (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48:50–57. https://doi.org/10.1016/j.ijbiomac.2010.09.013

  61. Ghasemlou M, Khodaiyan F, Oromiehie A (2011) Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydr Polym 84:477–483. https://doi.org/10.1016/j.carbpol.2010.12.010

    Article  CAS  Google Scholar 

  62. Guerreiro AC, Gago CML, Faleiro ML et al (2015) The effect of alginate-based edible coatings enriched with essential oils constituents on Arbutus unedo L. fresh fruit storage. Postharvest Biol Technol 100:226–233. https://doi.org/10.1016/j.postharvbio.2014.09.002

    Article  CAS  Google Scholar 

  63. Guillard V, Issoupov V, Redl A, Gontard N (2009) Food preservative content reduction by controlling sorbic acid release from a superficial coating. Innov Food Sci Emerg Technol 10:108–115. https://doi.org/10.1016/j.ifset.2008.07.001

    Article  CAS  Google Scholar 

  64. Günter EA, Martynov VV, Belozerov VS et al (2020) Characterization and swelling properties of composite gel microparticles based on the pectin and κ-carrageenan. Int J Biol Macromol 164:2232–2239. https://doi.org/10.1016/j.ijbiomac.2020.08.024

    Article  CAS  PubMed  Google Scholar 

  65. Guo C, Yin J, Chen D (2018) Co-encapsulation of curcumin and resveratrol into novel nutraceutical hyalurosomes nano-food delivery system based on oligo-hyaluronic acid-curcumin polymer. Carbohydr Polym 181:1033–1037. https://doi.org/10.1016/j.carbpol.2017.11.046

    Article  CAS  PubMed  Google Scholar 

  66. Halib N, Amin MCIM, Ahmad I (2012) Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose. Sains Malaysiana 41:205–211

    CAS  Google Scholar 

  67. Hassan AHA, Cutter CN (2020) Development and evaluation of pullulan-based composite antimicrobial films (CAF) incorporated with nisin, thymol and lauric arginate to reduce foodborne pathogens associated with muscle foods. Int J Food Microbiol 320:108519. https://doi.org/10.1016/j.ijfoodmicro.2020.108519

  68. Hay ID, Rehman ZU, Moradali MF et al (2013) Microbial alginate production, modification and its applications. Microb Biotechnol 6:637–650. https://doi.org/10.1111/1751-7915.12076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Heperkan ZD, Bolluk M, Bülbül S (2020) Structural analysis and properties of dextran produced by Weissella confusa and the effect of different cereals on its rheological characteristics. Int J Biol Macromol 143:305–313. https://doi.org/10.1016/j.ijbiomac.2019.12.036

    Article  CAS  PubMed  Google Scholar 

  70. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352. https://doi.org/10.1042/bj0580345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hotchkiss S, Brooks M, Campbell R et al (2016) The use of carrageenan in food. In: Leonel P (eds) Carrageenans, pp 229–243. Nova Science Publishers

    Google Scholar 

  72. Hussain Z, Sajjad W, Khan T, Wahid F (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose 26:2895–2911. https://doi.org/10.1007/s10570-019-02307-1

    Article  CAS  Google Scholar 

  73. Iguchi, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270. https://doi.org/10.1023/A

    Google Scholar 

  74. Izawa N, Hanamizu T, Iizuka R et al (2009) Streptococcus thermophilus produces exopolysaccharides including hyaluronic acid. J Biosci Bioeng 107:119–123. https://doi.org/10.1016/j.jbiosc.2008.11.007

    Article  CAS  PubMed  Google Scholar 

  75. Jebel FS, Almasi H (2016) Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr Polym 149:8–19. https://doi.org/10.1016/j.carbpol.2016.04.089

    Article  CAS  Google Scholar 

  76. Jiang T, Feng L, Wang Y (2013) Effect of alginate/nano-Ag coating on microbial and physicochemical characteristics of shiitake mushroom (Lentinus edodes) during cold storage. Food Chem 141:954–960. https://doi.org/10.1016/j.foodchem.2013.03.093

    Article  CAS  PubMed  Google Scholar 

  77. Jipa IM, Dobre L, Stroescu M et al (2012) Preparation and characterization of bacterial cellulose-poly(vinyl alcohol) films with antimicrobial properties. Mater Lett 66:125–127. https://doi.org/10.1016/j.matlet.2011.08.047

    Article  CAS  Google Scholar 

  78. Johri AK, Yalpani M, Kaplan DL (2003) Incorporation of fluorinated fatty acids into emulsan by Acinetobacter calcoaceticus RAG-1. Biochem Eng J 16:175–181. https://doi.org/10.1016/S1369-703X(03)00034-2

    Article  CAS  Google Scholar 

  79. Kalashnikova I, Bizot H, Bertoncini P et al (2013) Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 9:952–959. https://doi.org/10.1039/c2sm26472b

    Article  CAS  Google Scholar 

  80. Kalashnikova I, Bizot H, Cathala B, Capron I (2012) Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromol 13:267–275. https://doi.org/10.1021/bm201599j

    Article  CAS  Google Scholar 

  81. Kang KS, Pettitt DJ (1993) Xanthan, Gellan, Welan, and Rhamsan. Industrial gums, pp 341–397, 3rd edn. Academic Press

    Google Scholar 

  82. Kang ZL, Wang TT, Li YP et al (2020) Effect of sodium alginate on physical-chemical, protein conformation and sensory of low-fat frankfurters. Meat Sci 162:108043. https://doi.org/10.1016/j.meatsci.2019

  83. Kaur V, Bera MB, Panesar PS et al (2014) Welan gum: microbial production, characterization, and applications. Int J Biol Macromol 65:454–461. https://doi.org/10.1016/j.ijbiomac.2014.01.061

    Article  CAS  PubMed  Google Scholar 

  84. Khanal BKS, Bhandari B, Prakash S et al (2018) Modifying textural and microstructural properties of low fat Cheddar cheese using sodium alginate. Food Hydrocoll 83:97–108. https://doi.org/10.1016/j.foodhyd.2018.03.015

    Article  CAS  Google Scholar 

  85. Kiani H, Mousavi ME, Razavi H, Morris ER (2010) Effect of gellan, alone and in combination with high-methoxy pectin, on the structure and stability of doogh, a yogurt-based Iranian drink. Food Hydrocoll 24:744–754. https://doi.org/10.1016/j.foodhyd.2010.03.016

    Article  CAS  Google Scholar 

  86. Kim WS, Han GG, Hong L et al (2019) Novel production of natural bacteriocin via internalization of dextran nanoparticles into probiotics. Biomaterials 218:119360. https://doi.org/10.1016/j.biomaterials.2019.119360

  87. Konuk Takma D, Korel F (2017) Impact of preharvest and postharvest alginate treatments enriched with vanillin on postharvest decay, biochemical properties, quality and sensory attributes of table grapes. Food Chem 221:187–195. https://doi.org/10.1016/j.foodchem.2016.09.195

    Article  CAS  PubMed  Google Scholar 

  88. Kothari D, Tingirikari JMR, Goyal A (2015) In vitro analysis of dextran from Leuconostoc mesenteroides NRRL B-1426 for functional food application. Bioact Carbohydrates Diet Fibre 6:55–61. https://doi.org/10.1016/j.bcdf.2015.08.001

    Article  CAS  Google Scholar 

  89. Kras̈niewska K, Gniewosz M, Synowiec A et al (2015) The application of pullulan coating enriched with extracts from Bergenia crassifolia to control the growth of food microorganisms and improve the quality of peppers and apples. Food Bioprod Process 94:422–433. https://doi.org/10.1016/j.fbp.2014.06.001

    Article  CAS  Google Scholar 

  90. Kurt A, Toker OS, Tornuk F (2017) Effect of xanthan and locust bean gum synergistic interaction on characteristics of biodegradable edible film. Int J Biol Macromol 102:1035–1044. https://doi.org/10.1016/j.ijbiomac.2017.04.081

    Article  CAS  PubMed  Google Scholar 

  91. Kumar N, Neeraj P, Ojha A et al (2020) Effect of active chitosan-pullulan composite edible coating enrich with pomegranate peel extract on the storage quality of green Bell pepper. LWT Food Sci Technol 138:110435. https://doi.org/10.1016/j.lwt.2020.110435

  92. Kuswandi B, Asih NPN, Pratoko DK et al (2020) Edible pH sensor based on immobilized red cabbage anthocyanins into bacterial cellulose membrane for intelligent food packaging. Packag Technol Sci 33:321–332. https://doi.org/10.1002/pts.2507

    Article  CAS  Google Scholar 

  93. Kwiecień I, Kwiecień M (2018) Application of polysaccharide-based hydrogels as probiotic delivery systems. Gels 4:47. https://doi.org/10.3390/gels4020047

    Article  CAS  PubMed Central  Google Scholar 

  94. Kycia K, Chlebowska-Śmigiel A, Szydłowska A et al (2020) Pullulan as a potential enhancer of Lactobacillus and Bifidobacterium viability in synbiotic low fat yoghurt and its sensory quality. LWT Food Sci Technol 128:109414. https://doi.org/10.1016/j.lwt.2020

  95. la Riviére JWM, Kooiman P, Schmidt K (1967) Kefiran, a novel polysaccharide produced in the kefir grain by Lactobacillus brevis. Arch Mikrobiol 59:269–278. https://doi.org/10.1007/BF00406340

    Article  PubMed  Google Scholar 

  96. Langendorff V, Cuvelier G, Michon C et al (2000) Effects of carrageenan type on the behaviour of carrageenan/milk mixtures. Food Hydrocoll 14:273–280. https://doi.org/10.1016/S0268-005X(99)00064-8

    Article  CAS  Google Scholar 

  97. Lara G, Yakoubi S, Mae C et al (2020) Spray technology applications of xanthan gum-based edible coatings for fresh-cut lotus root (Nelumbo nucifera). Food Res Int 137:109723. https://doi.org/10.1016/j.foodres.2020.109723

  98. Lee H, Yoo B (2020) Agglomerated xanthan gum powder used as a food thickener: effect of sugar binders on physical, microstructural, and rheological properties. Powder Technol 362:301–306. https://doi.org/10.1016/j.powtec.2019.11.124

    Article  CAS  Google Scholar 

  99. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. León PG, Rojas AM (2007) Gellan gum films as carriers of l-(+)-ascorbic acid. Food Res Int 40:565–575. https://doi.org/10.1016/j.foodres.2006.10.021

    Article  CAS  Google Scholar 

  101. Li A, Gong T, Hou Y et al (2020) Alginate-stabilized thixotropic emulsion gels and their applications in fabrication of low-fat mayonnaise alternatives. Int J Biol Macromol 146:821–831. https://doi.org/10.1016/j.ijbiomac.2019.10.050

    Article  CAS  PubMed  Google Scholar 

  102. Li Q, Gao R, Wang L et al (2020) Nanocomposites of bacterial cellulose nanofibrils and zein nanoparticles for food packaging. ACS Appl Nano Mater 3:2899–2910. https://doi.org/10.1021/acsanm.0c00159

    Article  CAS  Google Scholar 

  103. Li XY, Du XL, Liu Y et al (2019) Rhubarb extract incorporated into an alginate-based edible coating for peach preservation. Sci Hortic (Amsterdam) 257:108685. https://doi.org/10.1016/j.scienta.2019.108685

  104. Li Y, Feng C, Li J et al (2017) Construction of multilayer alginate hydrogel beads for oral delivery of probiotics cells. Int J Biol Macromol 105:924–930. https://doi.org/10.1016/j.ijbiomac.2017.07.124

    Article  CAS  PubMed  Google Scholar 

  105. Li Z, Wang L, Hua J et al (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115–119. https://doi.org/10.1016/j.carbpol.2014.11.061

    Article  CAS  PubMed  Google Scholar 

  106. Liang Y, Qu Z, Liu M et al (2020) Effect of curdlan on the quality of frozen-cooked noodles during frozen storage. J Cereal Sci 95:103019. https://doi.org/10.1016/j.jcs.2020.103019

  107. Lin D, Liu Z, Shen R et al (2020) Bacterial cellulose in food industry: current research and future prospects. Int J Biol Macromol 158:1007–1019. https://doi.org/10.1016/j.ijbiomac.2020.04.230

    Article  CAS  PubMed  Google Scholar 

  108. Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113–119. https://doi.org/10.1016/j.biortech.2013.10.052

    Article  CAS  PubMed  Google Scholar 

  109. Lin KW, Lin HY (2004) Quality characteristics of chinese-style meatball containing bacterial cellulose (nata). J Food Sci 69:SNQ107–SNQ111. https://doi.org/10.1111/j.1365-2621.2004.tb13378.x

  110. Lorenzo G, Zaritzky N, Califano A (2013) Rheological analysis of emulsion-filled gels based on high acyl gellan gum. Food Hydrocoll 30:672–680. https://doi.org/10.1016/j.foodhyd.2012.08.014

    Article  CAS  Google Scholar 

  111. Martin-Piñero MJ, García MC, Muñoz J, Alfaro-Rodriguez MC (2019) Influence of the welan gum biopolymer concentration on the rheological properties, droplet size distribution and physical stability of thyme oil/W emulsions. Int J Biol Macromol 133:270–277. https://doi.org/10.1016/j.ijbiomac.2019.04.137

    Article  CAS  PubMed  Google Scholar 

  112. Martin AA, Sassaki GL, Sierakowski MR (2020) Effect of adding galactomannans on some physical and chemical properties of hyaluronic acid. Int J Biol Macromol 144:527–535. https://doi.org/10.1016/j.ijbiomac.2019.12.114

    Article  CAS  PubMed  Google Scholar 

  113. McIntosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1 → 3)-β-D-glucans. Appl Microbiol Biotechnol 68:163–173. https://doi.org/10.1007/s00253-005-1959-5

    Article  CAS  PubMed  Google Scholar 

  114. Milde LB, Chigal PS, Olivera JE, González KG (2020) Incorporation of xanthan gum to gluten-free pasta with cassava starch. Physical, textural and sensory attributes. LWT Food Sci Technol 131:109674. https://doi.org/10.1016/j.lwt.2020.109674

  115. Mohammadalinejhad S, Almasi H, Moradi M (2020) Immobilization of Echium amoenum anthocyanins into bacterial cellulose film: a novel colorimetric pH indicator for freshness/spoilage monitoring of shrimp. Food Control 113:107169. https://doi.org/10.1016/j.foodcont.2020.107169

  116. Mohammadi M, Sadeghnia N, Azizi MH et al (2014) Development of gluten-free flat bread using hydrocolloids: Xanthan and CMC. J Ind Eng Chem 20:1812–1818. https://doi.org/10.1016/j.jiec.2013.08.035

    Article  CAS  Google Scholar 

  117. Moradi M, Guimarães JT, Sahin S (2021) Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging. Curr Opin Food Sci 40:33–39. https://doi.org/10.1016/j.cofs.2020.06.001

    Article  Google Scholar 

  118. Moradi Z, Kalanpour N (2019) Kefiran, a branched polysaccharide: preparation, properties and applications: a review. Carbohydr Polym 223:115100. https://doi.org/10.1016/j.carbpol.2019.115100

  119. More TT, Yadav JSS, Yan S et al (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manage 144:1–25. https://doi.org/10.1016/j.jenvman.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  120. Morris ER, Nishinari K, Rinaudo M (2012) Gelation of gellan—a review. Food Hydrocoll 28:373–411. https://doi.org/10.1016/j.foodhyd.2012.01.004

    Article  CAS  Google Scholar 

  121. Moscovici M (2015) Present and future medical applications of microbial exopolysaccharides. Front Microbiol 6:1012. https://doi.org/10.3389/fmicb.2015.01012

  122. Muhammad DRA, Sedaghat Doost A, Gupta V et al (2020) Stability and functionality of xanthan gum–shellac nanoparticles for the encapsulation of cinnamon bark extract. Food Hydrocoll 100:105377. https://doi.org/10.1016/j.foodhyd.2019.105377

  123. Naloka K, Matsushita K, Theeragool G (2020) Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12. Int J Biol Macromol 150:1113–1120. https://doi.org/10.1016/j.ijbiomac.2019.10.117

    Article  CAS  PubMed  Google Scholar 

  124. Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med (Praha) 58:187–205. https://doi.org/10.17221/6758-VETMED

  125. Necas J, Bartosikova L, Brauner P, Kolar J (2008) Hyaluronic acid (hyaluronan): a review. Vet Med (Praha) 53:397–411. https://doi.org/10.17221/1930

  126. Nguyen VT, Gidley MJ, Dykes GA (2008) Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol 25:471–478. https://doi.org/10.1016/j.fm.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  127. Ni Y, Tang X, Fan L (2021) Improvement in physical and thermal stability of cloudy ginkgo beverage during autoclave sterilization: Effects of microcrystalline cellulose and gellan gum. LWT Food Sci Technol 135:110062. https://doi.org/10.1016/j.lwt.2020.110062

  128. NithyaBalaSundari S, Nivedita V, Chakravarthy M et al (2020) Characterization of microbial polysaccharides and prebiotic enrichment of wheat bread with pullulan. LWT Food Sci Technol 122:109002. https://doi.org/10.1016/j.lwt.2019.109002

  129. Nitschke M, Costa SGVAO (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259. https://doi.org/10.1016/j.tifs.2007.01.002

    Article  CAS  Google Scholar 

  130. Noorlaila A, Hasanah HN, Asmeda R, Yusoff A (2020) The effects of xanthan gum and hydroxypropylmethylcellulose on physical properties of sponge cakes. J Saudi Soc Agric Sci 19:128–135. https://doi.org/10.1016/j.jssas.2018.08.001

    Article  Google Scholar 

  131. Noreña CPZ, Bayarri S, Costell E (2015) Effects of Xanthan gum additions on the viscoelasticity, structure and storage stability characteristics of prebiotic custard desserts. Food Biophys 10:116–128. https://doi.org/10.1007/s11483-014-9371-2

    Article  Google Scholar 

  132. Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015. https://doi.org/10.3390/ijms131114002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Paximada P, Tsouko E, Kopsahelis N et al (2016) Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocoll 53:225–232. https://doi.org/10.1016/j.foodhyd.2014.12.003

    Article  CAS  Google Scholar 

  134. Phisalaphong M, Tran TK, Taokaew S et al (2016) Nata de coco Industry in Vietnam, Thailand, and Indonesia. In: Bacterial nanocellulose, pp 231–236. Elsevier. https://doi.org/10.1016/B978-0-444-63458-0.00014-7

  135. Piadozo MES (2016) Nata de Coco Industry in the Philippines. In: Bacterial nanocellulose, pp 215–229. Elsevier. https://doi.org/10.1016/B978-0-444-63458-0.00013-5

  136. Pitarresi G, Palumbo FS, Calabrese R et al (2007) Crosslinked hyaluronan with a protein-like polymer: novel bioresorbable films for biomedical applications. J Biomed Mater Res, Part A 84:413–424. https://doi.org/10.1002/jbm.a

    Article  Google Scholar 

  137. Qin Y, Jiang J, Zhao L et al (2018) Applications of alginate as a functional food ingredient. Biopolymers for food design, pp 409–429. Academic Press. Elsevier

    Google Scholar 

  138. Rättö M, Verhoef R, Suihko ML et al (2006) Colanic acid is an exopolysaccharide common to many enterobacteria isolated from paper-machine slimes. J Ind Microbiol Biotechnol 33:359–367. https://doi.org/10.1007/s10295-005-0064-1

    Article  CAS  PubMed  Google Scholar 

  139. Raungrusmee S, Shrestha S, Sadiq MB, Anal AK (2020) Influence of resistant starch, xanthan gum, inulin and defatted rice bran on the physicochemical, functional and sensory properties of low glycemic gluten-free noodles. LWT Food Sci Technol 126:109279. https://doi.org/10.1016/j.lwt.2020.109279

  140. Razavi MS, Golmohammadi A, Nematollahzadeh A et al (2020) Preparation of cinnamon essential oil emulsion by bacterial cellulose nanocrystals and fish gelatin. Food Hydrocoll 109:106111. https://doi.org/10.1016/j.foodhyd.2020.106111

  141. Rehm BHA (2015) Alginates: biology and applications: biology and applications, vol 13. Springer Science & Business Media

    Google Scholar 

  142. Revin V, Liyaskina E, Nazarkina M et al (2018) Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian J Microbiol 49:151–159. https://doi.org/10.1016/j.bjm.2017.12.012

    Article  CAS  Google Scholar 

  143. Rhim JW (2004) Physical and mechanical properties of water resistant sodium alginate films. LWT Food Sci Technol 37:323–330. https://doi.org/10.1016/j.lwt.2003.09.008

    Article  CAS  Google Scholar 

  144. Rovera C, Ghaani M, Santo N et al (2018) Enzymatic hydrolysis in the green production of bacterial cellulose nanocrystals. ACS Sustain Chem Eng 6:7725–7734. https://doi.org/10.1021/acssuschemeng.8b00600

    Article  CAS  Google Scholar 

  145. Rühmkorf C, Rübsam H, Becker T et al (2012) Effect of structurally different microbial homoexopolysaccharides on the quality of gluten-free bread. Eur Food Res Technol 235:139–146. https://doi.org/10.1007/s00217-012-1746-3

    Article  CAS  Google Scholar 

  146. Salari M, Sowti Khiabani M, Rezaei Mokarram R et al (2018) Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll 84:414–423. https://doi.org/10.1016/j.foodhyd.2018.05.037

    Article  CAS  Google Scholar 

  147. Santos J, Alcaide-González MA, Trujillo-Cayado LA et al (2020) Development of food-grade Pickering emulsions stabilized by a biological macromolecule (xanthan gum) and zein. Int J Biol Macromol 153:747–754. https://doi.org/10.1016/j.ijbiomac.2020.03.078

    Article  CAS  PubMed  Google Scholar 

  148. Schelegueda LI, Zalazar AL, Herbas ET et al (2020) Effect of gellan gum, xylitol and natamycin on Zygosaccharomyces bailii growth and rheological characteristics in low sugar content model systems. Int J Biol Macromol 164:1657–1664. https://doi.org/10.1016/j.ijbiomac.2020.07.277

    Article  CAS  PubMed  Google Scholar 

  149. Shahabi-Ghahfarrokhi I, Khodaiyan F, Mousavi M, Yousefi H (2015) Green bionanocomposite based on kefiran and cellulose nanocrystals produced from beer industrial residues. Int J Biol Macromol 77:85–91. https://doi.org/10.1016/j.ijbiomac.2015.02.055

    Article  CAS  PubMed  Google Scholar 

  150. Sharma N, Prasad GS, Choudhury AR (2013) Utilization of corn steep liquor for biosynthesis of pullulan, an important exopolysaccharide. Carbohydr Polym 93:95–101. https://doi.org/10.1016/j.carbpol.2012.06.059

    Article  CAS  PubMed  Google Scholar 

  151. Sharma S, Rao TVR (2015) Xanthan gum based edible coating enriched with cinnamic acid prevents browning and extends the shelf-life of fresh-cut pears. LWT Food Sci Technol 62:791–800. https://doi.org/10.1016/j.lwt.2014.11.050

    Article  CAS  Google Scholar 

  152. Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545. https://doi.org/10.1016/j.foodhyd.2013.07.012

    Article  CAS  Google Scholar 

  153. Silva NHCS, Vilela C, Almeida A et al (2018) Pullulan-based nanocomposite films for functional food packaging: exploiting lysozyme nanofibers as antibacterial and antioxidant reinforcing additives. Food Hydrocoll 77:921–930. https://doi.org/10.1016/j.foodhyd.2017.11.039

    Article  CAS  Google Scholar 

  154. Singh RS, Kaur N, Kennedy JF (2019) Pullulan production from agro-industrial waste and its applications in food industry: a review. Carbohydr Polym 217:46–57. https://doi.org/10.1016/j.carbpol.2019.04.050

    Article  CAS  PubMed  Google Scholar 

  155. Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–531. https://doi.org/10.1016/j.carbpol.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  156. Singhsa P, Narain R, Manuspiya H (2018) Bacterial cellulose nanocrystals (BCNC) preparation and characterization from three bacterial cellulose sources and development of functionalized BCNCs as nucleic acid delivery systems. ACS Appl Nano Mater 1:209–221. https://doi.org/10.1021/acsanm.7b00105

    Article  CAS  Google Scholar 

  157. Skryplonek K, Henriques M, Gomes D et al (2019) Characteristics of lactose-free frozen yogurt with κ-carrageenan and corn starch as stabilizers. J Dairy Sci 102:7838–7848. https://doi.org/10.3168/jds.2019-16556

    Article  CAS  PubMed  Google Scholar 

  158. Soto KM, Hernández-Iturriaga M, Loarca-Piña G et al (2019) Antimicrobial effect of nisin electrospun amaranth: pullulan nanofibers in apple juice and fresh cheese. Int J Food Microbiol 295:25–32. https://doi.org/10.1016/j.ijfoodmicro.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  159. Srikanth R, Reddy CHSSS, Siddartha G et al (2015) Review on production, characterization and applications of microbial levan. Carbohydr Polym 120:102–114. https://doi.org/10.1016/j.carbpol.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  160. Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178:4885–4893. https://doi.org/10.1128/jb.178.16.4885-4893.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Subhash M, Jadhav A, Jana S (2015) Sustainable production of microbial polysaccharide xanthan gum from supplemental subststrate. Magar Subhash B Abhijit S Jadhav Sumitkumar Jana. Int J Sci Res 4:9–11

    Google Scholar 

  162. Surya E, Fitriani Ridhwan M et al (2020) The utilization of peanut sprout extract as a green nitrogen source for the physicochemical and organoleptic properties of Nata de coco. Biocatal Agric Biotechnol 29:101781. https://doi.org/10.1016/j.bcab.2020.101781

  163. Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46. https://doi.org/10.1016/S0167-7799(80)01139-6

    Article  CAS  PubMed  Google Scholar 

  164. Tang X, Liu R, Huang W et al (2018) Impact of in situ formed exopolysaccharides on dough performance and quality of Chinese steamed bread. LWT Food Sci Technol 96:519–525. https://doi.org/10.1016/j.lwt.2018.04.039

    Article  CAS  Google Scholar 

  165. Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M (2016) Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym 137:360–374. https://doi.org/10.1016/j.carbpol.2015.10.074

    Article  CAS  PubMed  Google Scholar 

  166. Totosaus A, Pérez-Chabela ML (2009) Textural properties and microstructure of low-fat and sodium-reduced meat batters formulated with gellan gum and dicationic salts. LWT Food Sci Technol 42:563–569. https://doi.org/10.1016/j.lwt.2008.07.016

    Article  CAS  Google Scholar 

  167. Ullah H, Santos HA, Khan T (2016) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23:2291–2314. https://doi.org/10.1007/s10570-016-0986-y

    Article  CAS  Google Scholar 

  168. Valero D, Díaz-Mula HM, Zapata PJ et al (2013) Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol Technol 77:1–6. https://doi.org/10.1016/j.postharvbio.2012.10.011

    Article  CAS  Google Scholar 

  169. Venugopal V (2016) Marine polysaccharides: food applications. CRC Press

    Google Scholar 

  170. Viana VR, Silva MBF, Azero EG et al (2018) Assessing the stabilizing effect of xanthan gum on vitamin D-enriched pecan oil in oil-in-water emulsions. Colloids Surfaces A Physicochem Eng Asp 555:646–652. https://doi.org/10.1016/j.colsurfa.2018.07.052

    Article  CAS  Google Scholar 

  171. Vilela JAP, Da Cunha RL (2016) High acyl gellan as an emulsion stabilizer. Carbohydr Polym 139:115–124. https://doi.org/10.1016/j.carbpol.2015.12.045

    Article  CAS  PubMed  Google Scholar 

  172. Wang C, Zhang H, Wang J et al (2020) Colanic acid biosynthesis in Escherichia coli is dependent on lipopolysaccharide structure and glucose availability. Microbiol Res 239:126527. https://doi.org/10.1016/j.micres.2020.126527

  173. Wang M, Chen C, Sun G et al (2010) Effects of curdlan on the color, syneresis, cooking qualities, and textural properties of potato starch noodles. Starch/Staerke 62:429–434. https://doi.org/10.1002/star.201000007

    Article  CAS  Google Scholar 

  174. Wang Y, Sorvali P, Laitila A et al (2018) Dextran produced in situ as a tool to improve the quality of wheat-faba bean composite bread. Food Hydrocoll 84:396–405. https://doi.org/10.1016/j.foodhyd.2018.05.042

    Article  CAS  Google Scholar 

  175. Wang Y, Trani A, Knaapila A et al (2020) The effect of in situ produced dextran on flavour and texture perception of wholegrain sorghum bread. Food Hydrocoll 106:105913. https://doi.org/10.1016/j.foodhyd.2020.105913

  176. Wolter A, Hager AS, Zannini E et al (2014) Influence of dextran-producing Weissella cibaria on baking properties and sensory profile of gluten-free and wheat breads. Int J Food Microbiol 172:83–91. https://doi.org/10.1016/j.ijfoodmicro.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  177. Wu S, Lu M, Wang S (2016) Effect of oligosaccharides derived from Laminaria japonica-incorporated pullulan coatings on preservation of cherry tomatoes. Food Chem 199:296–300. https://doi.org/10.1016/j.foodchem.2015.12.029

    Article  CAS  PubMed  Google Scholar 

  178. Xiao G, Zhu Y, Wang L et al (2011) Production and storage of edible film using gellan gum. Procedia Environ Sci 8:756–763. https://doi.org/10.1016/j.proenv.2011.10.115

    Article  CAS  Google Scholar 

  179. Xu XJ, Fang S, Li YH et al (2019) Effects of low acyl and high acyl gellan gum on the thermal stability of purple sweet potato anthocyanins in the presence of ascorbic acid. Food Hydrocoll 86:116–123. https://doi.org/10.1016/j.foodhyd.2018.03.007

    Article  CAS  Google Scholar 

  180. Yan H, Chen X, Song H et al (2017) Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocoll 72:127–135. https://doi.org/10.1016/j.foodhyd.2017.05.044

    Article  CAS  Google Scholar 

  181. Yan Y, Duan S, Zhang H et al (2020) Preparation and characterization of Konjac glucomannan and pullulan composite films for strawberry preservation. Carbohydr Polym 243:116446. https://doi.org/10.1016/j.carbpol.2020.116446

  182. Yang X, Gong T, Lu YH et al (2020) Compatibility of sodium alginate and konjac glucomannan and their applications in fabricating low-fat mayonnaise-like emulsion gels. Carbohydr Polym 229:115468. https://doi.org/10.1016/j.carbpol.2019.115468

  183. Yordshahi AS, Moradi M, Tajik H, Molaei R (2020) Design and preparation of antimicrobial meat wrapping nanopaper with bacterial cellulose and postbiotics of lactic acid bacteria. Int J Food Microbiol 321:108561. https://doi.org/10.1016/j.ijfoodmicro.2020.108561

  184. Zhai X, Lin D, Liu D, Yang X (2018) Emulsions stabilized by nanofibers from bacterial cellulose: new potential food-grade Pickering emulsions. Food Res Int 103:12–20. https://doi.org/10.1016/j.foodres.2017.10.030

    Article  CAS  PubMed  Google Scholar 

  185. Zhang H, Zhang F, Yuan R (2019) Applications of natural polymer-based hydrogels in the food industry. Hydrogels based on natural polymers, pp 357–410, Elsevier

    Google Scholar 

  186. Zhang R, Edgar KJ (2014) Properties, chemistry, and applications of the bioactive polysaccharide curdlan. Biomacromol 15:1079–1096. https://doi.org/10.1021/bm500038g

    Article  CAS  Google Scholar 

  187. Zhang Y, Li D, Yang N et al (2018) Comparison of dextran molecular weight on wheat bread quality and their performance in dough rheology and starch retrogradation. LWT Food Sci Technol 98:39–45. https://doi.org/10.1016/j.lwt.2018.08.021

    Article  CAS  Google Scholar 

  188. Zhang Y, Zhou L, Zhang C et al (2020) Preparation and characterization of curdlan/polyvinyl alcohol/ thyme essential oil blending film and its application to chilled meat preservation. Carbohydr Polym 247:116670. https://doi.org/10.1016/j.carbpol.2020.116670

  189. Zhao Y, Fu R, Li J (2020) Effects of the β-glucan, curdlan, on the fermentation performance, microstructure, rheological and textural properties of set yogurt. LWT Food Sci Technol 128:109449. https://doi.org/10.1016/j.lwt.2020.109449

  190. Zhao Z, Wang S, Li D, Zhou Y (2020) Effect of xanthan gum on the quality of low sodium salted beef and property of myofibril proteins. Food Sci Hum Wellness 10:112–118. https://doi.org/10.1016/j.fshw.2020.09.003

  191. Zhu H, Jia S, Yang H et al (2010) Characterization of bacteriostatic sausage casing: a composite of bacterial cellulose embedded with ε-polylysine. Food Sci Biotechnol 19:1479–1484. https://doi.org/10.1007/s10068-010-0211-y

    Article  CAS  Google Scholar 

  192. Zia KM, Tabasum S, Nasif M et al (2017) A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol 96:282–301. https://doi.org/10.1016/j.ijbiomac.2016.11.095

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Figen Korel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arserim Ucar, D.K., Konuk Takma, D., Korel, F. (2021). Exopolysaccharides in Food Processing Industrials. In: Nadda, A.K., K. V., S., Sharma, S. (eds) Microbial Exopolysaccharides as Novel and Significant Biomaterials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-75289-7_8

Download citation

Publish with us

Policies and ethics