Skip to main content
Log in

Diverse Metabolic Capacities of Fungi for Bioremediation

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bioremediation refers to cost-effective and environment-friendly method for converting the toxic, recalcitrant pollutants into environmentally benign products through the action of various biological treatments. Fungi play a major role in bioremediation owing to their robust morphology and diverse metabolic capacity. The review focuses on different fungal groups from a variety of habitats with their role in bioremediation of different toxic and recalcitrant compounds; persistent organic pollutants, textile dyes, effluents from textile, bleached kraft pulp, leather tanning industries, petroleum, polyaromatic hydrocarbons, pharmaceuticals and personal care products, and pesticides. Bioremediation of toxic organics by fungi is the most sustainable and green route for cleanup of contaminated sites and we discuss the multiple modes employed by fungi for detoxification of different toxic and recalcitrant compounds including prominent fungal enzymes viz., catalases, laccases, peroxidases and cyrochrome P450 monooxygeneses. We have also discussed the recent advances in enzyme engineering and genomics and research being carried out to trace the less understood bioremediation pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AM:

Arbuscular mycorrhiza

AMF:

Arbuscular mycorrhizal fungi

APs:

Alkylphenols

BPS:

Biopurification system

DyPs:

Dye-decolorizing peroxidases

DDT:

Dichlorodiphenyltrichloroethane

DTAB:

Dodecyl trimethyl ammonium bromide

ECHO:

Extra-heavy crude oil

EDCs:

Endocrine disrupting chemicals

ESI:

Electron spray ionization

ESTs:

Expressed sequence tags

ETPs:

Effluent treatment plants

HMW-PAHs:

High molecular weight PAHs

LiP:

Lignin peroxidases

MnP:

Manganese peroxidases

MSW:

Municipal solid waste

M-TRFLP:

Multiplex terminal restriction fragment length polymorphism

OFMSW:

Organic fraction of MSW

PAHs:

Polyaromatic hydrocarbons

PCBs:

Polychlorinated biphenyls

PCDDs:

Polychlorinated dibenzo-p-dioxins

PCDFs:

Polychlorinated dibenzofurans

PCS:

Phytochelatin synthase

POPs:

Persistent organic pollutants

PPCPs:

Pharmaceuticals and personal care products

ROS:

Reactive oxygen species

SSF:

Solid-state fermentation

SSH:

Suppression subtractive hybridization

TALEN:

TAL effector nuclease (TALEN)

TNT:

Tri-nitro toluene

TOC:

Total organic carbon

TrOCs:

Trace organic contaminants

TCP:

3,5,6-Trichloro-2-pyridinol

UPO:

Unspecific peroxygenases

VFAs:

Volatile fatty acids

VP:

Versatile peroxidase

References

  1. Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–36. doi:10.1016/j.jclepro.2014.08.009

    Article  CAS  Google Scholar 

  2. Gillespie IMM, Philip JC (2013) Bioremediation, an environmental remediation technology for the bioeconomy. Trends Biotechnol 31:329–332. doi:10.1016/j.tibtech.2013.01.015

    Article  CAS  PubMed  Google Scholar 

  3. Mishra A, Malik A (2014) Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Bioresour Technol 171:217–226. doi:10.1016/j.biortech.2014.08.047

    Article  CAS  PubMed  Google Scholar 

  4. Sagarkar S, Mukherjee S, Nousiainen A, Björklöf K, Purohit HJ, Jørgensen KS, Kapley A (2013) Monitoring bioremediation of atrazine in soil microcosms using molecular tools. Environ Pollut 172:108–115. doi:10.1016/j.envpol.2012.07.048

    Article  CAS  PubMed  Google Scholar 

  5. Lien PJ, Ho HJ, Lee TH, Lai WL, Kao CM (2015) Effects of aquifer heterogeneity and geochemical variation on petroleum-hydrocarbon biodegradation at a gasoline spill site. Adv Mater Res 1079:584–588. doi:10.4028/www.scientific.net/AMR.1079-1080.584

    Google Scholar 

  6. Qin G, Gong D, Fan M-Y (2013) Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. Int Biodeterior Biodegradation 85:150–155. doi:10.1016/j.ibiod.2013.07.004

    Article  CAS  Google Scholar 

  7. Claus H (2014) Microbial degradation of 2,4,6-trinitrotoluene in vitro and in natural environments. In: Singh SN (ed) Biological remediation of explosive residues, environmental science and engineering. Springer International Publishing, Switzerland, pp 15–38. doi:10.1007/978-3-319-01083-0_2

    Chapter  Google Scholar 

  8. Nõlvak H, Truu J, Limane B, Truu M, Cepurnieks G, Bartkevičs V, Juhanson J, Muter O (2013) Microbial community changes in TNT spiked soil bioremediation trial using biostimulation, phytoremediation and bioaugmentation. J Environ Eng Landsc Manag 21:153–162. doi:10.3846/16486897.2012.721784

    Article  Google Scholar 

  9. Ni SQ, Wang Z, Lv L, Liang X, Ren L, Zhou Q (2015) Bioremediation of wastewaters with decabromodiphenyl ether by anaerobic granular sludge. Colloids Surf B Biointerfaces 128:522–527. doi:10.1016/j.colsurfb.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  10. Sakaki T, Yamamoto K, Ikushiro S (2013) Possibility of application of cytochrome P450 to bioremediation of dioxins. Biotechnol Appl Biochem 60:65–70. doi:10.1002/bab.1067

    Article  CAS  PubMed  Google Scholar 

  11. Wang S, Yang Q, Bai Z, Wang S, Wang Y, Nowak KM (2015) Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge. Environ Technol 36:115–123. doi:10.1080/09593330.2014.938127

    Article  PubMed  CAS  Google Scholar 

  12. Yang S, Hai FI, Nghiem LD et al (2013) Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin-modifying enzymes: a critical review. Bioresour Technol 141:97–108. doi:10.1016/j.biortech.2013.01.173

    Article  CAS  PubMed  Google Scholar 

  13. Durairaj P, Malla S, Nadarajan SP et al (2015) Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb Cell Fact 14:45. doi:10.1186/s12934-015-0228-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jebapriya GR, Gnanadoss JJ (2013) Bioremediation of textile dye using white-rot fungi: a review. Int J Curr Res Rev 5:1–13

    Google Scholar 

  15. Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengi L, Jacquot J-P, Gelhaye E (2013) Xenomic networks variability and adaptation traits in wood decaying fungi. Microb Biotechnol 6:248–263. doi:10.1111/1751-7915.12015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Anastasi A, Tigini V, Varese GC (2013) The bioremediation potential of different ecophysiological groups of fungi. In: Goltapeh EM et al (eds) Fungi as bioremediators. Soil Biol 32:29–49. doi:10.1007/978-3-642-33811-3_2

  17. Badia-Fabregat M, Lucas D, Gros M, Rodríguez-Mozaz S, Barceló D, Caminal G, Vicent T (2015) Identification of some factors affecting pharmaceutical active compounds (PhACs) removal in real wastewater. Case study of fungal treatment of reverse osmosis concentrate. J Hazard Mater 283:663–671. doi:10.1016/j.jhazmat.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Xie J, Liu M, Tian Z, He Z, van Nostrand JD, Ren L, Zhou J, Yang M (2013) Microbial community functional structure in response to antibiotics in pharmaceutical wastewater treatment systems. Water Res 47:6298–6308. doi:10.1016/j.watres.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  19. dos Santos Bazanella GC, Araujo AV, Castoldi R, Maciel GM, Inacio FD, de Souza CGM, Bracht A, Peralta RM (2013) Ligninolytic enzymes from white-rot fungi and application in the removal of synthetic dyes. In: Polizeli TM, Rai M, De Lourdes M (eds) Fungal enzymes. CRC Press, Boca Raton, pp 258–279

    Google Scholar 

  20. Rodríguez-Rodríguez CE, Castro-Gutiérrez V, Chin-Pampillo JS, Ruiz-Hidalgo K (2013) On-farm biopurification systems: role of white-rot fungi in depuration of pesticide-containing wastewaters. FEMS Microbiol Lett 345:1–12. doi:10.1111/1574-6968.12161

    Article  PubMed  CAS  Google Scholar 

  21. Baker PW, Charlton A, Hale MD (2015) Increased delignification by white-rot fungi after pressure refining Miscanthus. Bioresour Technol 189:81–86. doi:10.1016/j.biortech.2015.03.056

    Article  CAS  PubMed  Google Scholar 

  22. Singh MP, Vishwakarma SK, Srivastava AK (2013) Bioremediation of Direct Blue 14 and extracellular ligninolytic enzyme production by white-rot fungi: Pleurotus sp. Biomed Res Int. doi:10.1155/2013/180156

    Google Scholar 

  23. dos Santos YVS, Freire DA, Pinheiro SB, de Lima LF, de Souza JVB, Cavallazzi JRP (2015) Production of laccase from a white-rot fungi isolated from the Amazon forest for oxidation of Remazol Brilliant Blue-R. Sci Res Essays 10:132–136. doi:10.5897/SRE2013.5695

    Article  Google Scholar 

  24. Ntougias S, Baldrian P, Ehaliotis C, Nerud F, Merhautová V, Zervakis GI (2015) Olive mill wastewater biodegradation potential of white-rot fungi–Mode of action of fungal culture extracts and effects of ligninolytic enzymes. Bioresour Technol 189:121–130. doi:10.1016/j.biortech.2015

    Article  CAS  PubMed  Google Scholar 

  25. Lladó S, Covino S, Solanas AM, Vinas M, Petruccioli M, Dannibale A (2013) Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real industrial polluted soil. J Hazard Mater 248–249:407–414. doi:10.1016/j.jhazmat.2013.01.020

    Article  PubMed  CAS  Google Scholar 

  26. Cutright TJ, Erdem Z (2012) Overview of the bioremediation and the degradation pathways of DDT. J Adnan Menderes Univ Agric Fac 9:39–45

    Google Scholar 

  27. Fan B, Zhao Y, Mo G, Ma W, Wu J (2013) Co-remediation of DDT-contaminated soil using white-rot fungi and laccase extract from white-rot fungi. J Soil Sediment 13:1232–1245. doi:10.1007/s11368-013-0705-3

    Article  CAS  Google Scholar 

  28. Purnomo AS, Mori T, Putra SR, Kondo R (2013) Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int Biodeterior Biodegradation 82:40–44. doi:10.1016/j.ibiod.2013.02.013

    Article  CAS  Google Scholar 

  29. Rosales E, Pazos M, Ángeles Sanromán M (2013) Feasibility of solid-state fermentation using spent fungi-substrate in the biodegradation of PAHs. CLEAN Soil Air Water 41:610–615. doi:10.1002/clen.201100305

    Article  CAS  Google Scholar 

  30. Damare S, Singh P, Raghukumar S (2012) Biotechnology of marine fungi. Prog Mol Subcell Biol 53:277–297. doi:10.1007/978-3-642-23342-5_14

    Article  PubMed  Google Scholar 

  31. Thatoi H, Behera BC, Mishra RR (2013) Ecological role and biotechnological potential of mangrove fungi: a review. Mycology 4:54–71. doi:10.1080/21501203.2013.785448

    CAS  Google Scholar 

  32. Bonugli-Santos RC, dos Santos Vasconcelos MR, Passarini MR et al (2015) Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol 6:1–15. doi:10.3389/fmicb.2015.00269

    Article  Google Scholar 

  33. Gazem MAH, Nazareth S (2013) Sorption of lead and copper from an aqueous phase system by marine-derived Aspergillus species. Ann Microbiol 63:503–511. doi:10.1007/s13213-012-0495-7

    Article  CAS  Google Scholar 

  34. Baker S, Harini BP, Rakshith D, Satish S (2013) Marine microbes: invisible nanofactories. J Pharm Res 6:383–388. doi:10.1016/j.biortech.2015.03.056

    CAS  Google Scholar 

  35. Kathiresan K, Nabeel MA, Srimahibala P, Asmathunisha N, Saravanakumar K (2010) Analysis of antimicrobial silver nanoparticles synthesized by coastal strains E. coli and A. niger. Can J Microbiol 56:1050–1059. doi:10.1139/W10-094

    Article  CAS  PubMed  Google Scholar 

  36. Saxena J, Sharma MM, Gupta S, Singh A (2014) Emerging role of fungi in nanoparticle synthesis and their applications. World J Pharm Sci 3:1586–1613

    Google Scholar 

  37. Singh R, Kathiresan K, Anandhan S (2015) A review on marine based nanoparticles and their potential applications. Afr J Biotechnol 14:1525–1532. doi:10.5897/AJB2015.14527

    Article  CAS  Google Scholar 

  38. Divya LM, Prasanth GK, Sadasivan C (2013) Potential of the salt-tolerant laccase-producing strain Trichoderma viride Pers. NFCCI-2745 from an estuary in the bioremediation of phenol-polluted environments. J Basic Microbiol 54:542–547. doi:10.1002/jobm.201200394

    Article  PubMed  CAS  Google Scholar 

  39. Bonugli-Santos RC, Durrant LR, Sette LD (2012) The production of ligninolytic enzymes by marine-derived Basidiomycetes and their biotechnological potential in the biodegradation of recalcitrant pollutants and the treatment of textile effluents. Water Air Soil Pollut 223:2333–2345. doi:10.1007/s11270-011-1027-y

    Article  CAS  Google Scholar 

  40. Gao GR, Yin YF, Yang DY, Yang DF (2013) Promoting behavior of fungal degradation Polychlorinated Biphenyl by Maifanite. Adv Mater Res 662:515–519. doi:10.4028/www.scientific.net/AMR.662.515

    Article  CAS  Google Scholar 

  41. Verma AK, Raghukumar C, Parvatkar RR, Naik CG (2012) A rapid two-step bioremediation of the anthraquinone dye, Reactive Blue 4 by a marine-derived fungus. Water Air Soil Pollut 223:3499–3509. doi:10.1007/s11270-012-1127-3

    Article  CAS  Google Scholar 

  42. Vacondio B, Birolli WG, Ferreira IM, Seleghim MH, Gonçalves S, Vasconcellos SP, Porto AL (2015) Biodegradation of pentachlorophenol by marine-derived fungus Trichoderma harzianum CBMAI 1677 isolated from ascidian Didemnun ligulum. Biocatal Agric Biotechnol 4:266–275. doi:10.1016/j.bcab.2015.03.005

    Google Scholar 

  43. Hickey P (2013) Toxicity of water soluble fractions of crude oil on some bacteria and fungi Isolated from marine water. Am J Anim Res 3:24–29

    Google Scholar 

  44. Neifar M, Maktouf S, Ghorbel RE, Jaouani A, Cherif A (2015) Extremophiles as source of novel bioactive compounds with industrial potential. In: Gupta VK, Tuohy MG, O’Donovan A, Lohani M (eds) Biotechnology of bioactive compounds: sources and applications. Wiley, Hoboken, pp 245–268

    Google Scholar 

  45. Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3:597–611. doi:10.3390/biom3030597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sinha A, Sinha R, Khare SK (2014) Heavy metal bioremediation and nanoparticle synthesis by metallophiles. In: Parmar N, Singh A (eds) Geomicrobiology and biogeochemistry, soil biology. Springer, Berlin, pp 101–118

    Chapter  Google Scholar 

  47. Singh P, Raghukumar C, Parvatkar RR, Mascarenhas-Pereira MBL (2013) Heavy metal tolerance in the psychrotolerant Cryptococcus sp. isolated from deep-sea sediments of the Central Indian Basin. Yeast 30:93–101. doi:10.1002/yea.2943

    Article  CAS  PubMed  Google Scholar 

  48. Naranjo-Briceno L, Perniam B, Guerra M et al (2013) Potential role of oxidative exoenzymes of the extremophilic fungus Pestalotiopsis palmarum BM-04 in biotransformation of extra-heavy crude oil. Microb Biotechnol 6:720–730. doi:10.1111/1751-7915.12067

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Betancor L, Johnson GR, Luckarift HR (2013) Stabilized laccases as heterogeneous bioelectrocatalysts. ChemCatChem 5:46–60. doi:10.1002/cctc.201200611

    Article  CAS  Google Scholar 

  50. Li Y, Fu K, Gao S, Wu Q, Fan L, Li Y, Chen J (2013) Increased virulence of transgenic Trichoderma koningi strains to the Asian corn borer larvae by over-expressing heterologous chit42 gene with chitin-binding domains. J Environ Sci Health, Part B 48:376–383. doi:10.1080/03601234.2013.742386

    Article  CAS  Google Scholar 

  51. Narayanan K, Chopade N, Raj PV, Subrahmanyam VM, Rao JV (2013) Fungal chitinase production and its application in bio-waste management. J Sci Ind Res 72:393–399

    CAS  Google Scholar 

  52. Connel L, Staudigel H (2013) Fungal diversity in a dark oligotrophic volcanic ecosystem (DOVE) on Mount Erebus, Antarctica. Biology 2:798–809. doi:10.3390/biology2020798

    Article  Google Scholar 

  53. Fester T (2013) Arbuscular mycorrhizal fungi in a wetland constructed for benzene-, methyl tert-butyl ether- and ammonia-contaminated groundwater bioremediation. Microb Biotechnol 6:80–84. doi:10.1111/j.1751-7915.2012.00357.x

    Article  PubMed  CAS  Google Scholar 

  54. Tegli S, Cerbonesch M, Corsi M, Bonnanni M, Bianchini R (2013) Water recycle as a must: decolorization of textile wastewaters by plant-associated fungi. J Basic Microbiol 54:120–132. doi:10.1002/jobm.201200401

    Article  PubMed  CAS  Google Scholar 

  55. Aranda E, Scervino JM, Godoy P, Reina R, Ocampo JA, Wittich R-M, García-Romera I (2013) Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions. Environ Pollut 181:182–189. doi:10.1016/j.envpol.2013.06.034

    Article  CAS  PubMed  Google Scholar 

  56. Vinichuk M, Mårtensson A, Ericsson T, Rosén K (2013) Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils. J Environ Radioact 115:151–156. doi:10.1016/j.jenvrad.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  57. Sousa NR, Ramos MA, Marques APGC, Castro PML (2014) A genotype dependent-response to cadmium contamination in soil is displayed by Pinus pinaster in symbiosis with different mycorrhizal fungi. Appl Soil Ecol 76:7–13. doi:10.1016/j.apsoil.2013.12.005

    Article  Google Scholar 

  58. Xie S, Sun S, Dai SY, Yuan JS (2013) Efficient coagulation of microalgae in cultures with filamentous fungi. Algal Res 2:28–33. doi:10.1016/j.algal.2012.11.004

    Article  Google Scholar 

  59. Akhtar S, Mahmood-ul-Hassan M, Ahmad R, Suthor V, Yasin M (2013) Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent. Soil Environ 32:55–62

    CAS  Google Scholar 

  60. Huang J, Fu Y, Liu Y (2014) Comparison of alkali-tolerant fungus Myrothecium sp. IMER1 and white-rot fungi for decolorization of textile dyes and dye effluents. J Bioremediat Biodegrad 5:1–5. doi:10.4172/2155-6199.1000221

    Google Scholar 

  61. Buvaneswari S, Damodarkumar S, Murugesan S (2013) Bioremediation studies on sugar-mill effluent by selected fungal species. Int J Curr Microbiol App Sci 2:50–58

    Google Scholar 

  62. Bennett RM, Cordero PRF, Bautista GS, Dedeles GR (2013) Reduction of hexavalent chromium using fungi and bacteria isolated from contaminated soil and water samples. Chem Ecol 29:320–328. doi:10.1080/02757540.2013.770478

    Article  CAS  Google Scholar 

  63. Duarte K, Justino CI, Pereira R, Panteleitchouk TS, Freitas AC, Rocha-Santos TA, Duarte AC (2013) Removal of the organic content from a bleached kraft pulp mill effluent by a treatment with silica–alginate–fungi biocomposites. J Environ Sci Heal A Tox Hazard Subst Environ Eng 48:166–172. doi:10.1080/03601234.2012.716745

    Article  CAS  Google Scholar 

  64. Reya I, Lakshmi Prabha M, Renitta E (2013) Equilibrium and kinetic studies on biosorption of Cr(VI) using novel Aspergillus jegita isolated from tannery effluent. Res J Chem Environ 17:72–78

    CAS  Google Scholar 

  65. Nayak V, Pai PV, Pai A, Pai S, Sushma YD, Rao CV (2013) A comparative study of caffeine degradation by four different fungi. Bioremediat J 17:79–85. doi:10.1080/10889868.2012.751960

    Article  CAS  Google Scholar 

  66. Maruthi YA, Hossain K, Thakre S (2013) Aspergillus flavus: a potential bioremediator for oil contaminated soils. Eur J Sustain Dev 2:57–66. doi:10.14207/ejsd.2013.v2n1p57

    Article  Google Scholar 

  67. Silambarasan S, Abraham J (2013) Ecofriendly method for bioremediation of chlorpyrifos from agricultural soil by novel fungus Aspergillus terreus JAS1. Water Air Soil Pollut 224:1369. doi:10.1007/s11270-012-1369-0

    Article  CAS  Google Scholar 

  68. Chang YT, Lee JF, Liu KH, Liao YF, Yang V (2015) Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation. Environ Sci Pollut Res. doi:10.1007/s11356-015-4248-6

    Google Scholar 

  69. Balaji V, Arulazhagan P, Ebenezer P (2014) Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J Environ Biol 35:521–529

    CAS  PubMed  Google Scholar 

  70. Dhiman SS, Garg G, Sharma J, Kalia VC, Kang YC, Lee JK (2014) Reduction in acute ecotoxicity of paper mill effluent by sequential application of xylanase and laccase. PLoS ONE 9:e102581. doi:10.1371/journal.pone.0102581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Marjadi D (2013) Toxicity assessment and microbial degradation of synthetic dyes. Int J Chemtech App 2:126–136

    Google Scholar 

  72. Ferraz ERA, Oliveira GAR, Grando MD, Lizier TM, Zanoni MVB, Oliveira DP (2013) Photoelectrocatalysis based on Ti/TiO2 nanotubes removes toxic properties of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1 from aqueous chloride samples. J Environ Manag 124:108–114. doi:10.1016/j.jenvman.2013.03.033

    Article  CAS  Google Scholar 

  73. Bayramoglu G, Arica MY (2013) Removal of reactive dyes from wastewater by acrylate polymer beads bearing amino groups: isotherm and kinetic studies. Color Technol 129:114–124. doi:10.1111/cote.12012

    Article  CAS  Google Scholar 

  74. Watharkar AD, Khandare RV, Waghmare PR, Jagadale AD, Govindwar SP, Jadhav JP (2015) Treatment of textile effluent in a developed phytoreactor with immobilized bacterial augmentation and subsequent toxicity studies on Etheostoma olmstedi fish. J Hazard Mater 283:698–704. doi:10.1016/j.jhazmat.2014.10.019

    Article  CAS  PubMed  Google Scholar 

  75. Gül ÜD, Dönmez G (2013) Application of mixed fungal biomass for effective reactive dye removal from textile effluents. Desalin Water Treat 51:3597–3603. doi:10.1080/19443994.2012.750812

    Article  CAS  Google Scholar 

  76. Asgher M, Yasmeen Q, Iqbal HMN (2013) Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white-rot fungus Schizophyllum commune IBL-06. Saudi J Biol Sci 20:347–352. doi:10.1016/j.sjbs.2013.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hai FI, Yamamoto K, Nakajima F, Fukushi K, Nghiem LD, Price WE, Jin B (2013) Degradation of azo dye acid orange 7 in a membrane bioreactor by pellets and attached growth of Coriolus versicolour. Bioresour Technol 141:29–34. doi:10.1016/j.biortech.2013.02.020

    Article  CAS  PubMed  Google Scholar 

  78. Zhang T, Tang J, Sun J, Yu C, Liu Z, Chen J (2015) Hex1-related transcriptome of Trichoderma atroviride reveals expression patterns of ABC transporters associated with tolerance to dichlorvos. Biotechnol Lett. doi:10.1007/s10529-015-1806-4

    Google Scholar 

  79. Kataoka R, Takagi K, Kamei I, Kiyota H, Sato Y (2010) Biodegradation of dieldrin by a soil fungus isolated from a soil with annual endosulfan applications. Environ Sci Technol 44:6343–6349. doi:10.1021/es1000227

    Article  CAS  PubMed  Google Scholar 

  80. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Mol Clin Environ Toxicol 133–164. Springer Basel

  81. Chakraborty S, Mukherjee A, Das TK (2013) Biochemical characterization of a lead-tolerant strain of Aspergillus foetidus: an implication of bioremediation of lead from liquid media. Int Biodeterior Biodegradation 84:134–142. doi:10.1016/j.ibiod.2012.05.031

    Article  CAS  Google Scholar 

  82. Kurniati E, Arfarita N, Imai T, Higuchi T, Kanno A, Yamamoto K, Sekine M (2014) Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. J Environ Sci 26:1223–1231. doi:10.1016/S1001-0742(13)60592-6

    Article  CAS  Google Scholar 

  83. Mumtaz S, Streten-Joyce C, Parry DL, Mc Guinness KA, Lu P, Gibb KS (2013) Fungi outcompete bacteria under increased uranium concentration in culture media. J Environ Radioact 120:39–44. doi:10.1016/j.jenvrad.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  84. Yang Y, Liang Y, Ghosh A, Song Y, Chen H, Tang M (2015) Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead–zinc mine area: potential applications for phytoremediation. Environ Sci Pollut Res Int 22:13179–13193. doi:10.1007/s11356-015-4521-8

    Article  CAS  PubMed  Google Scholar 

  85. Garg N, Bhandari P (2014) Cadmium toxicity in crop plants and its alleviation by arbuscular mycorrhizal (AM) fungi: an overview. Plant Biosyst 148:609–621. doi:10.1080/11263504.2013.788096

    Article  Google Scholar 

  86. Das D, Chakraborty A, Bhar S, Sudarshan M, Santra SC (2013) Gamma irradiation in modulating cadmium bioremediation potential of Aspergillus sp. IOSR J Environ Sci Toxicol Food Technol 3:51–55

    Article  CAS  Google Scholar 

  87. Habib K, Schmidt JH, Christensen P (2013) A historical perspective of global warming potential from municipal solid waste management. Waste Manag 33:1926–1933. doi:10.1016/j.wasman.2013.04.016

    Article  PubMed  Google Scholar 

  88. Soobhany N, Mohee R, Garg VK (2015) Comparative assessment of heavy metals content during the composting and vermicomposting of municipal solid waste employing Eudrilus eugeniae. Waste Manag 39:130–145. doi:10.1016/j.wasman.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  89. Khardenavis A, Wang JY, Ng WJ, Purohit HJ (2013) Management of various organic fractions of municipal solid waste via recourse to VFA and biogas generation. Environ Technol 34:2085–2097. doi:10.1080/09593330.2013.817446

    Article  PubMed  CAS  Google Scholar 

  90. Pandit PD, Gulhane MK, Khardenavis AA, Vaidya AN (2015) Technological advances for treating municipal waste. In: Kalia VC (ed) Microbial factories, vol 1(4.1). Springer, USA

  91. Janveja C, Rana SS, Soni SK (2013) Environmentally acceptable management of kitchen waste residues by using them as substrates for the co-production of a cocktail of fungal carbohydrases. Int J Chem Env Eng Syst 4:20–29

    Google Scholar 

  92. Dhiman SS, Haw JR, Kalyani D, Kalia VC, Kang YC, Lee JK (2015) Simultaneous pretreatment and saccharification: green technology for enhanced sugar yields from biomass using a fungal consortium. Bioreosur Technol 179:50–57. doi:10.1016/j.biortech.2014.11.059

    Article  CAS  Google Scholar 

  93. Marco E, Font X, Sánchez A, Gea T, Gabarrell X, Caminal G (2013) Co-composting as a management strategy to reuse the white–rot fungus Trametes versicolor after its use in a biotechnological process. Int J Environ Waste Manag 11:100–108. doi:10.1504/IJEWM.2013.050637

    Article  CAS  Google Scholar 

  94. Hattori T, Hisamori H, Suzuki S, Umezawa T, Yoshimura T, Sakai H (2015) Rapid copper transfer and precipitation by wood-rotting fungi can effect copper removal from copper sulfate-treated wood blocks during solid-state fungal treatment. Int Biodeterior Biodegradation 97:195–201. doi:10.1016/j.ibiod.2014.11.011

    Article  CAS  Google Scholar 

  95. He L, Huang H, Zhang Z, Lei Z (2015) A review of hydrothermal pretreatment of lignocellulosic biomass for enhanced biogas production. Curr Org Chem 19:437–446

    Article  CAS  Google Scholar 

  96. Ikehata K (2015) Use of fungal laccases and peroxidases for enzymatic treatment of wastewater containing synthetic dyes. Green Chem Dyes Remov Wastewater Res Trends Appl. doi:10.1002/9781118721001.ch6

    Google Scholar 

  97. Fonseca MI, Farina JI, Sanabria NI, Villalba LL, Zapata PD (2013) Influence of culture conditions on laccase production, growth and isoenzyme patterns in native white-rot fungi from the Misiones rainforest. BioResources 8:2855–2866

    Article  Google Scholar 

  98. Syed K, Porollo A, Lam YW, Grimmet PE, Yadav JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702. doi:10.1128/AEM.03767-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wong K-S, Cheung M-K, Au C-H, Kwan H-S (2013) A novel Lentinula edodes laccase and its comparative enzymology suggest guaiacol-based laccase engineering for bioremediation. PLoS ONE 8:e66426. doi:10.1371/journal.pone.0066426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Margot J, Bennati-Granier C, Maillard J, Blánquez P, Barry DA, Holliger C (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3:63. doi:10.1186/2191-0855-3-63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Vishwanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G (2014) Fungal laccases and their applications in bioremediation. Enzyme Res. doi:10.1155/2014/163242

    Google Scholar 

  102. Fillat U, Prieto A, Camararo S, Martinez AT, Martinez MJ (2012) Biodeinking of flexographic inks by fungal laccases using synthetic and natural mediators. Biochem Eng J 67:97–103. doi:10.1016/j.bej.2012.05.010

    Article  CAS  Google Scholar 

  103. Chhaya U, Gupte A (2013) Possible role of laccase from Fusarium incarnatum UC-14 In bioremediation of Bisphenol A using reverse micelles system. J Hazard Mater 254–255:149–156. doi:10.1016/j.jhazmat.2013.03.054

    Article  PubMed  CAS  Google Scholar 

  104. Dhakar K, Jain R, Tamta S, Pandey A (2014) Prolonged laccase production by a cold and pH tolerant strain of Penicillium pinophilum (MCC 1049) isolated from a low temperature environment. Enzyme Res. doi:10.1155/2014/120708

    PubMed  PubMed Central  Google Scholar 

  105. Kallio JP, Gasparetti C, Andberg M, Boer H, Koivula A, Kruus K et al (2011) Crystal structure of an ascomycete fungal laccase from Thielavia arenaria–common structural features of asco-laccases. FEBS J 278:2283–2295. doi:10.1111/j.1742-4658.2011.08146.x

    Article  CAS  PubMed  Google Scholar 

  106. Patel SKS, Kalia VC, Choi J-H, Haw J-R, Kim I-W, Lee JK (2014) Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J Microbiol Biotechnol 24:639–647. doi:10.4014/jmb.1401.01025

    Article  CAS  PubMed  Google Scholar 

  107. Mate D, Garcia-Ruiz E, Camarero S, Alcalde M (2011) Directed evolution of fungal laccases. Curr Genomics 12:113–122. doi:10.2174/138920211795564322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Torres-Salas P, Mate DM, Ghazi I, Plou FJ, Ballesteros AO, Alcalde M (2013) Widening the pH activity profile of a fungal laccase by directed evolution. ChemBioChem 14:934–937. doi:10.1002/cbic.201300102

    Article  CAS  PubMed  Google Scholar 

  109. Pardo I, Chanaga X, Vicente AI, Alcalde M, Camarero S (2013) New colorimetric screening assays for the directed evolution of fungal laccases to improve the conversion of plant biomass. BMC Bitechnol 13:90. doi:10.1186/1472-6750-13-90

    Article  CAS  Google Scholar 

  110. Polak J, Jarosz-Wilkolazka A (2012) Fungal laccases as green catalysts for dye synthesis. Proc Biochem 47:1295–1307. doi:10.1016/j.procbio.2012.05.006

    Article  CAS  Google Scholar 

  111. Pita T, Alves-Pereira I, Ferreira R (2013) Decline in peroxidase and catalases by lindane may cause an increase in reactive oxygen species in Saccharomyces cerevisiae. In: Mendez-Vilas A (ed) Industrial, medical and environmental applications of microorganisms, current status and trends. Wageningen Academic Publishers, Netherlands

    Google Scholar 

  112. Mitra A, Roy D, Roy P, Bor AM, Sarkar Mitra AK (2014) Sustainability of Aspergillus spp. in metal enriched substrate aiming towards increasing bioremediation potential. World J Pharm Pharm Sci 3:864–878

    Google Scholar 

  113. Zhang Q, Zeng G, Chen G, Yan M, Chen A, Du J et al (2015) The effect of heavy metal-induced oxidative stress on the enzymes in white-rot fungus Phanerochaete chrysosporium. Appl Biochem Biotechnol 175:1281–1293. doi:10.1007/s12010-014-1298-z

    Article  CAS  PubMed  Google Scholar 

  114. Thippeswamy B, Shivakumar CK, Krishnappa M (2014) Studies on heavy metals detoxification biomarkers in fungal consortia. Caribb J Sci Technol 2:496–502

    Google Scholar 

  115. Lin X, Li X, Sun T, Li P, Zhou Q, Sun L, Hu X (2009) Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil. Bull Environ Contam Toxicol 83:542–547. doi:10.1007/s00128-009-9838-x

    Article  CAS  PubMed  Google Scholar 

  116. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res. doi:10.4061/2011/805187

    PubMed  PubMed Central  Google Scholar 

  117. Hofrichter M, Ullrich R (2014) Oxidations catalyzed by fungal peroxygeneases. Curr Opin Chem Biol 19:116–125. doi:10.1016/j.cbpa.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  118. Liers C, Pecyna MJ, Kellner H, Worrich A, Holger Z, Steffen KT, Hofrichter M, Ullrich R (2013) Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases. Appl Microbiol Biotechnol 97:5839–5849. doi:10.1007/s00253-012-4521-2

    Article  CAS  PubMed  Google Scholar 

  119. Strittmatter E, Liers C, Ullrich R, Wachter S, Hofrichter M, Plattner DA, Piontek K (2013) First crystal structure of a fungal high-redox potential dye-decolorizing peroxidase substrate interaction sites and long- range electron transfer. J Biol Chem 288:4095–4102. doi:10.1074/jbc.M112.400176

    Article  CAS  PubMed  Google Scholar 

  120. Baratto MC, Juarez-Moreno K, Pogni R, Basosi R, Vazquez-Duhalt R (2015) EPR and LC-MS studies on the mechanism of industrial dye decolourization by versatile peroxidase from Bjerkandera adusta. Environ Sci Pollut Res 22:8683–8692. doi:10.1007/s11356-014-4051-9

    Article  CAS  Google Scholar 

  121. Fernández-Fueyo E, Ruiz-Dueñas FJ, Martínez AT (2014) Engineering a fungal peroxidase that degrades lignin at very acidic pH. Biotechnol Biofuels 7:114. doi:10.1186/1754-6834-7-114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Urlacher VB, Girhard M (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30:26–36. doi:10.1016/j.tibtech.2011.06.012

    Article  CAS  PubMed  Google Scholar 

  123. Ichinose H (2013) Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol Appl Biochem 60:71–81. doi:10.1002/bab.1061

    Article  CAS  PubMed  Google Scholar 

  124. Guengerich FP, Munro AW (2013) Unusual cytochrome P450 enzymes and reactions. J Biol Chem 288:17065–17073. doi:10.1074/jbc.R113.462275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bhattacharya SS, Syed K, Shann J, Yadav JS (2013) A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a]pyrene in soil under nutrient-sufficient conditions by the white-rot fungus Phanerochaete chrysosporium. J Hazard Mater 261:675–683. doi:10.1007/s13205-013-0148-y

    Article  CAS  PubMed  Google Scholar 

  126. Theron CW, Labuschagné M, Gudiminchi R, Albertyn J, Smit MS (2014) A broad-range yeast expression system reveals Arxula adeninivorans expressing a fungal self-sufficient cytochrome P450 monooxygenase as an excellent whole-cell biocatalyst. FEMS Yeast Res 14:556–566. doi:10.1111/1567-1364.12142

    Article  CAS  PubMed  Google Scholar 

  127. Sari AA, Tachibana S, Muryanto Hadibarata T (2015) Development of bioreactor systems for decolorization of Reactive Green 19 using white-rot fungus. Desalin Water Treat. doi:10.1080/19443994.2015.1012121

    Google Scholar 

  128. Kiran S, Ali S, Asgher M (2013) Degradation and mineralization of azo dye Reactive Blue 222 by sequential Photo-Fenton’s oxidation followed by aerobic biological treatment using white-rot fungi. Bull Environ Contam Toxicol 90:208–215. doi:10.1007/s00128-012-0888-0

    Article  CAS  PubMed  Google Scholar 

  129. Yang S, Hai FI, Nghiem LD, Nguyen LN, Roddick LD (2013) Removal of bisphenol A and diclofenac by a novel fungal membrane bioreactor operated under non-sterile conditions. Int Biodeterior Biodegradation 85:483–490. doi:10.1016/j.biortech.2013.01.173

    Article  CAS  Google Scholar 

  130. Rahman RA, Molla AH, Fakhru’l-Razi A (2014) Assessment of sewage sludge bioremediation at different hydraulic retention times using mixed fungal inoculation by liquid-state bioconversion. Environ Sci Pollut Res 21:1178–1187. doi:10.1007/s11356-013-1974-5

    Article  CAS  Google Scholar 

  131. Liu S, Hou Y, Sun G (2013) Synergistic degradation of pyrene and volatilization of arsenic by co-cultures of bacteria and a fungus. Front Environ Sci Eng 7:191–199. doi:10.1007/s11783-012-0470-3

    Article  CAS  Google Scholar 

  132. Cobas M, Ferreira L, Tavares T, Sanroman MA, Pazos M (2013) Development of permeable reactive biobarrier for the removal of PAHs by Trichoderma longibrachiatum. Chemosphere 91:711–716. doi:10.1016/j.chemosphere.2013.01.028

    Article  CAS  PubMed  Google Scholar 

  133. Spina F, Tigini V, Prigione V, Varese GC (2015) Fungal biocatalysts in the textile industry: whole-cell systems in real textile wastewater treatment. In: Gupta VK, Mac RL, Sreenivasaprasad S (eds) Fungal bio-molecules: sources. Wiley, Applications and Recent Developments, pp 39–50

    Google Scholar 

  134. Srivastava S (2015) Bioremediation technology: a greener and sustainable approach for restoration of environmental pollution. In: Kaushik G (ed) Applied environmental biotechnology: present scenario and future trends. Springer, India, pp 1–18. doi:10.1007/978-81-322-2123-4_1

    Google Scholar 

  135. Sharma KK (2015) Fungal genome sequencing: basic biology to biotechnology. Crit Rev Biotechnol. doi:10.3109/07388551.2015.1015959

    Google Scholar 

  136. Mougin C, Cheviron N, Pinheiro M, Lebrun JD, Boukcim H (2013) New insights into the use of filamentous fungi and their degradative enzymes as tools for assessing the ecotoxicity of contaminated soils during bioremediation processes. Fungi Bioremediators. Soil Biol 32:419–432. doi:10.1007/978-3-642-33811-3_18

    Article  CAS  Google Scholar 

  137. Testa A, Di Matteo A, Rao MA, Monti MM, Pedata PA, Van Der Lee TAJ (2012) A genomic approach for identification of fungal genes involved in pentachlorophenol degradation. Adv Res Sci Areas 9:1386–1389

    Google Scholar 

  138. Shine AM, Shakya VP, Idnurm A (2015) Phytochelatin synthase is required for tolerating metal toxicity in a basidiomycete yeast and is a conserved factor involved in metal homeostasis in fungi. Fungal Biol Biotechnol 2:1–13. doi:10.1186/s40694-015-0013-3

    Article  Google Scholar 

  139. Desai C, Pathak H, Madamwar D (2010) Advances in molecular and "-omics" technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour Technol 101:1558–1569. doi:10.1016/j.biortech.2009.10.080

    Article  CAS  PubMed  Google Scholar 

  140. Li T, Wright DA, Spalding MH, Yang B (2015) TALEN-based genome editing in yeast. In: Genetic transformation systems in fungi, vol 1. Springer International Publishing, Switzerland, pp 289–307

  141. Kerrigan RW, Challen MP, Burton KS (2013) Agaricus bisporus genome sequence: a commentary. Fungal Genet Biol 55:2–5. doi:10.1016/j.fgb.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  142. Sun J, Lu X, Rinas U, Zeng AP (2007) Metabolic peculiarities of Aspergillus niger disclosed by comparative metabolic genomics. Genome Biol 8:R182. doi:10.1186/gb-2007-8-9-r182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Kalyani D, Tiwari MK, Jinglin Li, Kim SC, Kalia VC, Kang YC (2015) A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and its application in the hydrolysis of biomass. PLoS ONE. doi:10.1371/journal.pone.0120156

    PubMed  PubMed Central  Google Scholar 

  144. Bleve G, Lezzi C, Spagnolo S, Rampino P, Perrotta C, Mita G, Grieco F (2014) Construction of a laccase chimerical gene: recombinant protein characterization and gene expression via yeast surface display. Appl Biochem Biotechnol 6:2916–2931. doi:10.1007/s12010-014-0734-4

    Article  CAS  Google Scholar 

  145. Benghazi L, Record E, Suárez A, Gomez-Vidal JA, Martínez J, de la Rubia T (2014) Production of the Phanerochaete flavido-alba laccase in Aspergillus niger for synthetic dyes decolorization and biotransformation. World J Microbiol Biotechnol 30:201–211. doi:10.1007/s11274-013-1440-z

    Article  CAS  PubMed  Google Scholar 

  146. Sonoki T, Kajita S, Iimura Y (2012) Phytoremediation of bis-phenol A via secretory fungal peroxidases produced by transgenic plants. INTECH Open Access Publisher

  147. Rivera-Hoyos CM, Morales-Álvarez ED, Poveda-Cuevas SA, Reyes-Guzmán EA, Poutou-Piñales RA, Reyes-Montaño EA et al (2015) Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris. PLoS ONE. doi:10.1371/journal.pone.0116524

    PubMed  PubMed Central  Google Scholar 

  148. Saroj S, Kumar K, Prasad M, Singh RP (2014) Differential expression of peroxidase and ABC transporter as the key regulatory components for degradation of azo dyes by Penicillium oxalicum SAR-3. Funct Integr Genomics 14:631–642. doi:10.1007/s10142-014-0405-0

    Article  CAS  PubMed  Google Scholar 

  149. Ceci A, Pierro L, Riccardi C, Pinzari F, Maggi O, Persiani AM, Papini MP (2015) Biotransformation of β-hexachlorocyclohexane by the saprotrophic soil fungus Penicillium griseofulvum. Chemosphere 137:101–107. doi:10.1016/j.chemosphere.2015.05.074

    Article  CAS  PubMed  Google Scholar 

  150. Choe SI, Gravelat FN, Al Abdallah Q, Lee MJ, Gibbs BF, Sheppard DC (2012) Role of Aspergillus niger acrA in arsenic resistance and its use as the basis for an arsenic biosensor. Appl Environ Microbiol 78:3855–3863. doi:10.1128/AEM.07771-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jafari M, Danesh YR, Goltapeh EM, Varma A (2013) Bioremediation and genetically modified organisms. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as bioremediators. Springer, Berlin, pp 433–451

  152. Caspi R, Altman T, Billington R et al (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 42:D459–D471. doi:10.1093/nar/gkt1103

    Article  CAS  PubMed  Google Scholar 

  153. Ulcnik A, Kralj Cigić I, Pohleven F (2013) Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases. World J Microbiol Biotechnol 29:2239–2247. doi:10.1007/s11274-013-1389-y

    Article  CAS  PubMed  Google Scholar 

  154. VazAraL’ijo A, Castoldi R, Maria G, Maciel FDI, Marques CG (2013) Ligninolytic enzymes from white-rot fungi and application in the removal of synthetic dyes. In: Polizeli TM, Rai M, De Lourdes M (eds) Fungal enzymes. CRC Press, Boca Raton, pp 258–279

    Google Scholar 

  155. Hadibarata T, Zubir MM, Rubiyabto TZ, Chuang TZ, Yusoff AR, Fulazzaky MA, Seng B, Nugroho AE (2013) Degradation and transformation of anthracene by white-rot fungus Armillaria sp. F022. Folia Microbiol 58:385–391. doi:10.1007/s12223-013-0221-2

    Article  CAS  Google Scholar 

  156. Martins TM, Núñez O, Gallart-Ayala H, Leitão MC, Galceran MT, Pereira CS (2014) New branches in the degradation pathway of monochlorocatechols by Aspergillus nidulans: a metabolomics analysis. J Hazard Mater 268:264–272. doi:10.1016/j.jhazmat.2014.01.024

    Article  CAS  PubMed  Google Scholar 

  157. Thion C, Cébron A, Beguiristain T, Leyval C (2013) Inoculation of PAH-degrading strains of Fusarium solani and Arthrobacter oxydans in rhizospheric sand and soil microcosms: microbial interactions and PAH dissipation. Biodegradation 24:569–581. doi:10.1007/s10532-013-9628-3

    Article  CAS  PubMed  Google Scholar 

  158. Xiao P, Mori T, Kamei I, Kiyota H, Takagi K, Kondo R (2011) Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white-rot fungi of the genus Phlebia. Chemosphere 85:218–224. doi:10.1016/j.chemosphere.2011.06.028

    Article  CAS  PubMed  Google Scholar 

  159. Martins TM, Hartmann DO, Planchon S, Martins I, Renaut J, Pereira CS (2015) The old 3-oxoadipate pathway revisited: new insights in the catabolism of aromatics in the saprophytic fungus Aspergillus nidulans. Fungal Genet Biol 74:32–44. doi:10.1016/j.fgb.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  160. Mouhamadou B, Faure M, Sage L, Marçais J, Souard F, Geremia RA (2013) Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biol 117:268–274. doi:10.1016/j.funbio.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  161. Marco-Urrea E, García-Romera I, Aranda E (2015) Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol. doi:10.1016/j.nbt.2015.01.005

    Google Scholar 

  162. Wu J, Zhao Y, Liu L, Fan B, Li M (2013) Remediation of soil contaminated with decarbrominated diphenyl ether using white-rot fungi. J Environ Eng Landsc Manag 21:171–179

    Article  Google Scholar 

  163. Turlo J (2014) The biotechnology of higher fungi-current state and perspectives. Folia Biol Oecol 10:49–65. doi:10.2478/fobio-2014-0010

    Google Scholar 

  164. Ellegaard-Jensen L, Aamand J, Kragelund BB, Johnsen AH, Rosendahl S (2013) Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron. Biodegradation 24:765–774. doi:10.1007/s10532-013-9624-7

    Article  CAS  PubMed  Google Scholar 

  165. Ma L, Zhuo R, Liu H, Yu D, Jiang M, Zhang X, Yang Y (2014) Efficient decolorization and detoxification of the sulfonated azo dye Reactive Orange 16 and simulated textile wastewater containing Reactive Orange 16 by the white-rot fungus Ganoderma sp. En3 isolated from the forest of Tzu-chin Mountain in China. Biochem Eng J 82:1–9. doi:10.1016/j.bej.2013.10.015

    Article  CAS  Google Scholar 

  166. Damisa D, Oyegoke TS, Ijah UJJ, Adabara NU, Bala JD, Abdulsalam R (2013) Biodegradation of petroleum by fungi isolated from unpolluted tropical soil. Int J Appl Biol Pharm Technol 4:136–140

    Google Scholar 

  167. Isola D, Selbmann L, de Hoog GS, Fenice M, Onofri S, Prenafeta-Boldú FX, Zucconi L (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175:369–379. doi:10.1007/s11046-013-9635-2

    Article  PubMed  Google Scholar 

  168. Hadibarata T, Teh ZC, Zubir MM, Khudhair AB, Yusoff AR, Salim MR, Hidayat T (2013) Identification of naphthalene metabolism by white-rot fungus Pleurotus eryngii. Bioprocess Biosyst Eng 24:728–732. doi:10.1007/s00449-013-0884-8

    Google Scholar 

  169. Rodarte-Morales AI, Feijoo G, Moreira MT, Lema JM (2011) Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World J Microbiol Biotechnol 27:1839–1846. doi:10.1007/s11274-010-0642-x

    Article  Google Scholar 

  170. Martins MR, Pereira P, Lima N, Cruz-Morais J (2013) Degradation of Metalaxyl and Folpet by filamentous fungi isolated from Portuguese (Alentejo) vineyard soils. Arch Environ Contam Toxicol 65:67–77. doi:10.1007/s00244-013-9877-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Director, CSIR-National Environmental Engineering Research Institute (NEERI), for providing necessary facilities for this work. Radhika Deshmukh is grateful to the Council of Scientific and Industrial Research (CSIR), India for the award of Junior and Senior Research Fellowship. Funds from CSIR for 12th Five Year Plan project ESC0108 are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshuman A. Khardenavis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, R., Khardenavis, A.A. & Purohit, H.J. Diverse Metabolic Capacities of Fungi for Bioremediation. Indian J Microbiol 56, 247–264 (2016). https://doi.org/10.1007/s12088-016-0584-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0584-6

Keywords

Navigation