Skip to main content
Log in

Rhizobia species: A Boon for “Plant Genetic Engineering”

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Since past three decades new discoveries in plant genetic engineering have shown remarkable potentials for crop improvement. Agrobacterium Ti plasmid based DNA transfer is no longer the only efficient way of introducing agronomically important genes into plants. Recent studies have explored a novel plant genetic engineering tool, Rhizobia sp., as an alternative to Agrobacterium, thereby expanding the choice of bacterial species in agricultural plant biotechnology. Rhizobia sp. serve as an open license source with no major restrictions in plant biotechnology and help broaden the spectrum for plant biotechnologists with respect to the use of gene transfer vehicles in plants. New efficient transgenic plants can be produced by transferring genes of interest using binary vector carrying Rhizobia sp. Studies focusing on the interactions of Rhizobia sp. with their hosts, for stable and transient transformation and expression of genes, could help in the development of an adequate gene transfer vehicle. Along with being biologically beneficial, it may also bring a new means for fast economic development of transgenic plants, thus giving rise to a new era in plant biotechnology, viz. “Rhizobia mediated transformation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References:

  1. Primrose SB, Twyman RM (2006) Principles of gene manipulations and genomes, 7th edn. Wiley-Blackwell, Malden, pp 274–298

  2. Gould F (1998) Evolutionary biology and genetically engineered crops. Bioscience 38:26–33

    Article  Google Scholar 

  3. Torney F, Moeller L, Scarpa A, Wang K (2007) Genetic engineering approaches to improve bioethanol production from maize. Curr Opin Biotechnol 18:193–199

    Article  PubMed  CAS  Google Scholar 

  4. Kern M (2002) Food, feed, fibre, fuel and industrial products of the future: challenges and opportunities understanding the strategic potential of plant genetic engineering. J Agron Crop Sci 188:291–304

    Article  Google Scholar 

  5. Mittendorf V, Robertson EJ, Leec HRM, Kruger N, Steinbuchel A, Poirier Y (1998) Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid β-oxidation. Appl Biol Sci 95:13397–13402

    CAS  Google Scholar 

  6. Strand, Stuart (2009) Engineering transgenic plants for the sustained containment and in situ treatment of energetic materials. Strategic Environmental Research and Development Program, Final Report SERDP Project ER-1318, pp 1–5, University of Washington

  7. Slater A, Scott NW, Fowler MR (2008) Plant biotechnology: genetic manipulation of plants. Oxford University Press, Oxford

    Google Scholar 

  8. Hood EE, Woodard SL, Horn ME (2002) Monoclonal antibody manufacturing in transgenic plants—myths and realities. Curr Opin Biotechnol 13:630–635

    Article  PubMed  CAS  Google Scholar 

  9. Gustavo AR, Gonzalez-Cabrera J, Vazquez-Padron R, Ayra-Pardo C (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. Electron J Biotechnol 1(3):118–133

    Google Scholar 

  10. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “Gene-Jocking” tool. Microbiol Mol Biol 26:16–37

    Article  Google Scholar 

  11. Chawala HS (2002) Introduction to plant biotechnology, 2nd edn. B H Publishing Co. Pvt. Ltd, Oxford

    Google Scholar 

  12. Clough SJ, Bent AF (1998) A floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  13. Gelvin SB (2003) Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21:95–98

    Article  PubMed  CAS  Google Scholar 

  14. Kuta DD, Tripathi L (2005) Agrobacterium-induced hypersensitivity necrotic reaction in plant cells: a resistance response against Agrobacterium-mediated DNA transfer. Afr J Biotechnol 4:752–757

    CAS  Google Scholar 

  15. Deng W, Pu Xa, Goodman RN, Gordan MP, Nester EW (1995) T-DNA genes responsible for inducing a necrotic response on grape vines. Mol Plant Microbe Interact 8:538–548

    Article  PubMed  CAS  Google Scholar 

  16. Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W, Mayer JE, Roa-Rodrigez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    Article  PubMed  CAS  Google Scholar 

  17. Coutinho HLC, Oliveria VMD, Moreira FMS (2000) Systematics of legume nodule nitrogen fixating bacteria. In: Priest FG, Goodfellow M (eds) Applied microbial systematics. Springer, New York, pp 107–134

    Chapter  Google Scholar 

  18. Fred EB, Baldwinn IL, McCoy E (2007) Root nodule bacteria and leguminous plants. University of Wisconsin Press, Madison

    Google Scholar 

  19. Weir B (2006) The current taxonomy of Rhizobia. New Zealand, http://www.rhizobia.co.nz/taxonomy/rhizobia.html

  20. Murray RGE, Brenner DJ, Colwell RR, De Vos P, Goodfellow M, Grimont PAD, Pfenning N, Stackebrandt E, Zavarzin GA (1990) Report of the ad hoc committee on approaches to taxonomy within the Proteobacteria. Int J Syst Bacteriol 40:213–215

    Article  Google Scholar 

  21. Chen WM, Moulin L, Bontemps C, Vandamme P, Bena G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J Bacteriol 185:7266–7272

    Article  PubMed  CAS  Google Scholar 

  22. Moulin LA, Dreyfus Munive B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950

    Article  PubMed  CAS  Google Scholar 

  23. Young JM, Kuykendall LD, Martinez Romero E, Kerr A, Sawada H (2003) Classification and nomenclature of Agrobacterium and Rhizobium. Int J Syst Evol Microbiol 53:1689–1695

    Article  PubMed  CAS  Google Scholar 

  24. Farrand SK, Van Berkum PB, Oger P (2003) Agrobacterium is definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1681–1687

    Article  PubMed  CAS  Google Scholar 

  25. Kwon SW, Park JY, Kim JS, Kang JW, Cho YH, Lim CK, Parker MA, Lee GB (2005) Phyllogenetic analysis of the genera Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium on the basis of 16S rRNA gene and internally transcribed spacer region sequences. Int J Syst Evol Microbiol 55:263–270

    Article  PubMed  CAS  Google Scholar 

  26. Amarger N, Macheret V, Laguerren G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006

    Article  PubMed  CAS  Google Scholar 

  27. Chen WX, Tan ZY, Gao JL, Li Y, Wang ET (1997) Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 47:870–873

    Article  PubMed  CAS  Google Scholar 

  28. de Lajudie P, Willems A, Pot B et al (1994) Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov. and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733

    Article  Google Scholar 

  29. Tan ZY, Xu XD, Wang ET, Gao JL, Martínez-Romero E, Chen WX (1997) Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related Rhizobia. Int J Syst Bacteriol 47:874–879

    Article  PubMed  CAS  Google Scholar 

  30. Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Mare JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen.nov. Int J Syst Bacteriol 47:895–898

    Article  Google Scholar 

  31. Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC (1994) Rhizobium ciceri sp. nov. consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44:511–522

    Article  PubMed  CAS  Google Scholar 

  32. Rome S, Fernandez MP, Brunel B, Normand P, Cleyet-Marel JC (1996) Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Bacteriol 46:972–980

    Article  PubMed  CAS  Google Scholar 

  33. Sawada H, Ieki H, Oyaizu H, Matsumoto S (1993) Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int J Syst Bacteriol 43:694–702

    Article  PubMed  CAS  Google Scholar 

  34. Wang ET, Van Berkum P, Beyene D, Sui XH, Dorado O, Chen WX, Martinez-Romero E (1998) Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 48:687–699

    Article  PubMed  CAS  Google Scholar 

  35. Willems A, Collins MD (1993) Phylogenetic analysis of Rhizobia and Agrobacteria based on 16S rRNA gene sequences. Int J Syst Bacteriol 43:305–313

    Article  PubMed  CAS  Google Scholar 

  36. Brenner JD, Kreig NR, Staley JT (2005) Bergeys manual of systematic bacteriology, 2nd edn. Springer, New York, pp 324–354

    Book  Google Scholar 

  37. Tighe SW, de Lajudie P, Dipietro K, Lindstrom K, Nick G, Jarvis BDW (2000) Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801

    Article  PubMed  CAS  Google Scholar 

  38. Wood DW et al (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323

    Article  PubMed  CAS  Google Scholar 

  39. Galibert F et al (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    Article  PubMed  CAS  Google Scholar 

  40. Van Veen RJM, den Dulk-Ras H, Schilperoort RA, Hooykaas PJJ (1989) Ti plasmid containing Rhizobium meliloti are non-tumorigenic on plants, despite proper virulence gene induction and T-strand formation. Arch Microbiol 153:85–89

    Article  Google Scholar 

  41. Atherly AG (2004) Agrobacterium, Rhizobium and other gram negative soil bacterium. In: Wang (ed) Transformation of plants and soil microorganism. Cambridge University Press, Cambridge, pp 23–33

    Google Scholar 

  42. Vincze E, Bowra S (2006) Transformation of Rhizobia with broad host range plasmids using Freeze-thaw method. Appl Environ Microbiol 72:2290–2293

    Article  PubMed  CAS  Google Scholar 

  43. Hayashi M, Maeda Y, Hashimoto Y, Murooka Y (2000) Efficient transformation of Mesorhizobium huakuii subsp. rengei and Rhizobium species. J Biosci Bioeng 89:550–553

    Article  PubMed  CAS  Google Scholar 

  44. Garg B, Dogra RC, Sarma PK (1999) High efficient transformation of Rhizobium leguminosarum by electroporation. Appl Environ Microbiol 65:2802–2804

    PubMed  CAS  Google Scholar 

  45. Hattermann DR, Stacey G (1990) Efficient DNA transformation of Bradyrhizobium Japonicum by electroporation. Appl Environ Microbiol 56:833–836

    PubMed  CAS  Google Scholar 

  46. Selvaraj G, Iyer VN (1981) Genetic transformation of Rhizobium meliloti by plasmid DNA. Gene 15:279–283

    Article  PubMed  CAS  Google Scholar 

  47. Saika SP, Jain V (2007) Biological nitrogen fixation with non-legumes: an achievable targetor a dogama? Curr Sci 92:317–322

    Google Scholar 

  48. Hulse M, Johnson S, Ferrieri P (1993) Agrobacterium infections in humans: experience at one hospital and review. Clin Infect Dis 16:112–117

    Article  PubMed  CAS  Google Scholar 

  49. Paphitou NI, Rolston KV (2003) Catheter-related bacteremia caused by Agrobacterium radiobacter in a cancer patient:case report and literature review. Infection 31:421–424

    PubMed  CAS  Google Scholar 

  50. Giammanco GM et al (2004) Molecular typing of Agrobacterium species isolates from catheter-related bloodstream infections. Infect Control Hosp Epidemiol 25:885–887

    Article  PubMed  Google Scholar 

  51. Stricker RB, Savely VR, Zaltsman A, Citovsky V (2007) Contribution of Agrobacterium to morgellons disease. J Invest Med 55:123

    Google Scholar 

  52. Kunik T et al (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 98:1871–1876

    Article  PubMed  CAS  Google Scholar 

  53. Charity JA, Klimaszewska K (2005) Persistence of Agrobacterium tumefaciens in transformed conifers. Environ Biosafety Res 4:167–177

    Article  PubMed  CAS  Google Scholar 

  54. Liberman DF, Wolfe L, Fink R, Gilman E (1996) Biological safety considerations for environmental release of transgenic organisms and plants. In: Levin MA, Israeli E (eds) Engineered organisms in environmental settings: biotechnological and agricultural applications. CRC press, Boca Raton, pp 41–64

    Google Scholar 

  55. Chung SM, Vaidya M, Tzfira T (2005) Agrobacterium is not alone: gene transfer to plants by viruses and other bacteria. Trends Genet 11:1–4

    Google Scholar 

  56. Ditt RF, Nester EW, Comai L (2001) Plant gene expression response to Agrobacterium tumefaciens. PNAS 98:10054–10059

    Article  Google Scholar 

  57. Pu XA, Goodman RN (1992) Induction of necrosis by Agrobacterium tumefaciens on grape explants. Physiol Mol Plant Pathol 41:245–254

    Article  Google Scholar 

  58. Hansen G (2000) Evidence for Agrobacterium-induced apoptosis in maize cell. Mol Plant Microbe Interact 13:649–657

    Article  PubMed  CAS  Google Scholar 

  59. Hao G, Zhang H, Zheng D, Burr TJ (2005) luxR Homolog avhR in Agrobacterium vitis Affects the Development of a Grape-Specific Necrosis and a Tobacco Hypersensitive Response. J Bacteriol 187:185–192

    Article  PubMed  CAS  Google Scholar 

  60. Lacroix B, Tzfira T, Vainstein A, Citovsky V (2006) A case of promisity: Agrobacterium’s endless hunt for new partners. Trends Genet 22:29–37

    Article  PubMed  CAS  Google Scholar 

  61. Perl A, Lotan O, Abu-Abied M, Holland D (1996) Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape-Agrobacterium interactions. Nat Biotechnol 14:624–628

    Article  PubMed  CAS  Google Scholar 

  62. Hellens R, Mullineaux P, Klee H (2003) A guide to Agrobacterium binary vectors. Trends Plant Sci 5:446–451

    Article  Google Scholar 

  63. Ingram J (1998) Plant cyclophilins and Agrobacterium. Trends Plant Sci 3:292

    Article  Google Scholar 

  64. Tzfria T, Citovsky V (2002) Partners in infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12:121–129

    Article  Google Scholar 

  65. Tzfira T, Li J, Lacroix B, Citovsky V (2004) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20:375–383

    Article  PubMed  CAS  Google Scholar 

  66. Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarika Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, U., Sinha, S. Rhizobia species: A Boon for “Plant Genetic Engineering”. Indian J Microbiol 51, 521–527 (2011). https://doi.org/10.1007/s12088-011-0149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-011-0149-7

Keywords

Navigation