Skip to main content

Advertisement

Log in

The effect of landscape heterogeneity and host movement on a tick-borne pathogen

  • Original paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Landscape heterogeneity can be instrumental in determining local disease risk, pathogen persistence and spread. This is because different landscape features such as habitat type determine the abundance and spatial distributions of hosts and pathogen vectors. Therefore, disease prevalence and distribution are intrinsically linked to the hosts and vectors that utilise the different habitats. Here, we develop a simplified reaction diffusion model of the louping-ill virus and red grouse (Lagopus lagopus scoticus) system to investigate the occurrence of a tick-borne pathogen and the effect of host movement and landscape structure. Ticks (Ixodes ricinus), the virus-vector, are dispersed by a virally incompetent tick host, red deer (Cervus elephus), between different habitats, whilst the virus infects only red grouse. We investigated how deer movement between different habitats (forest and moorland) affected tick distribution and hence prevalence of infected ticks and grouse and hence, the effect of habitat size ratio and fragmentation on infection. When habitat type has a role in the survival of the pathogen vector, we demonstrated that habitat fragmentation can have a considerable effect on infection. These results highlight the importance of landscape heterogeneity and the proximity and size of adjacent habitats when predicting disease risk in a particular location. In addition, this model could be useful for other pathogen systems with generalist vectors and may inform policy on possible disease management strategies that incorporate host movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan BF, Keesing F, Ostfeld RS (2003) Effect of forest fragmentation on Lyme disease risk. Conserv Biol 17:272

    Article  Google Scholar 

  • Boots M, Sasaki A (2001) Parasite–driven extinction in spatially explicit host–parasite systems. Am Nat 159:706–713

    Article  Google Scholar 

  • Caraco T, Glavanakov S, Gang C, Flaherty JE, Ohsumi TK, Szymanski BK (2002) Stage-structured infection transmission and a spatial epidemic: a model for Lyme disease. Am Nat 160:348–359

    Article  PubMed  Google Scholar 

  • Danielova V, Holubova J, Daniel M (2002) Tick-borne encephalitis virus prevalence in Ixodes ricinus ticks collected in high risk habitats of the South-Bohemian region of the Czech Republic. Exp Appl Acarol 26:145–151

    Article  PubMed  CAS  Google Scholar 

  • Davies KF, Melbourne BA, Margules CR (2001) Effects of within-and between-patch processes on community dynamics in a fragmentation experiment. Ecology 82:1830–1846

    Article  Google Scholar 

  • Delgardo S, Carmenes P (1995) Seroepidemiological survey for Borrelia burgdorferi (Lyme disease) in dogs from northwestern of Spain. Eur J Epidemiol 11:321–324

    Article  Google Scholar 

  • Ewers RM, Thorpe S, Didham RK (2007) Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88:106

    Article  Google Scholar 

  • Fagan WF, Cantrell RS, Cosner C (1999) How habitat edges change species interactions. Am Nat 153:165–182

    Article  Google Scholar 

  • Fletcher RJ (2005) Multiple edge effects and their implication in fragmented landscapes. J Anim Ecol 74:342–352

    Article  Google Scholar 

  • Gilbert L, Norman R, Laurenson K, Reid HW, Hudson PJ (2001) Disease persistence and apparent competition in a three host community: an empirical and analytical study of large-scale, wild populations. J Anim Ecol 70:1053–1061

    Article  Google Scholar 

  • Gratz NG (1999) Emerging and resurging vector-borne diseases. Annu Rev Entomol 44:51–75

    Article  PubMed  CAS  Google Scholar 

  • Gray JS (1998) The ecology of ticks transmitting Lyme borreliosis. Exp Appl Acarol 22:249–258

    Article  Google Scholar 

  • Gray JS, Lohan G (1982) The development of a sampling method for the tick Ixodes ricinus and its use in a redwater fever area. Ann Appl Biol 101:421–427

    Article  Google Scholar 

  • Hudson PJ (1992) Grouse in space and time: the population of managed gamebird. The Game Conservancy, Fordingbridge, Hants

    Google Scholar 

  • Hudson PJ, Norman R, Laurenson MK, Newborn D, Gaunt M, Jones LD, Reid HW, Gould EA, Bowers R, Dobson A (1995) Persistence and transmission of tick-borne viruses: ixodes ricinus and louping ill virus in red grouse populations. Parasitology 111:49–58

    Article  Google Scholar 

  • Jones LD, Gaunt M, Hails RS, Laurenson K, Hudson PJ, Reid HW, Henbest P, Gould EA (1997) Transmission of Louping ill virus between infected and uninfected ticks co-feeding on mountain hares. Med Vet Entomol 11:172–176

    Article  PubMed  CAS  Google Scholar 

  • Kalluri S, Gilruth P, Rogers D, Szczur M (2007) Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review. PLoS Pathog 3:1361–1371

    Article  PubMed  CAS  Google Scholar 

  • Kirby AD, Smith AA, Benton TG, Hudson PJ (2004) Rising burden of immature sheep ticks (Ixodes ricinus) on red grouse (Lagopus lagopus scoticus) chicks in the Scottish uplands. Med Vet Entomol 18(1):67–70

    Article  PubMed  CAS  Google Scholar 

  • Kivaria FM (2006) Estimated direct economic costs associated with tick-borne diseases on cattle in Tanzania. Trop Anim Health Prod 38:291–299

    Article  PubMed  CAS  Google Scholar 

  • Laurenson MK, Norman R, Gilbert L, Reid HW, Hudson PJ (2003) Identifying disease reservoirs in complex systems: mountain hares as reservoirs of ticks and louping-ill virus, pathogens of red grouse. J Anim Ecol 72:177–185

    Article  Google Scholar 

  • Malcolm JR (1994) Edge effects in central amazonian forest fragments. Ecology 75:2438–2445

    Article  Google Scholar 

  • Maupin G, Fish D, Zultowsky J, Campos EG, Piesman J (1991) Landscape ecology of lyme disease in a residential area of Westcheter County, New York. Am J Epidemiol 133:1105–1113

    PubMed  CAS  Google Scholar 

  • McCallum H (2008) Landscape structure, disturbance, and disease dynamics. In: Ostfeld FR (ed) Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Norman R, Bowers RG, Begon M, Hudson PJ (1999) Persistence of tick-borne virus in the presence of multiple host species: tick reservoirs and parasite mediated competition. J Theor Biol 200:111–118

    Article  PubMed  CAS  Google Scholar 

  • Nupp TE, Swihart RK (1996) Effect of forest patch area on population attributes of white-footed mice (Peromyscus leucopus) in fragmented landscapes. Can J Zool 74:467–472

    Article  Google Scholar 

  • Ostfeld RS, Cepeda OM, Hazler KR, Miller MC (1995) Ecology of Lyme disease: habitat associations of ticks (Ixodes scapularis) in a rural landscape. Ecol Appl 5:353–361

    Article  Google Scholar 

  • Ostfeld RS, Hazler KR, Cepeda OM (1996) Temporal and spatial dynamics of Ixodes scapularis (Acari: Ixodidae) in a rural landscape. J Med Entomol 33:90–95

    PubMed  CAS  Google Scholar 

  • Parola P, Raoult D (2001) Tick-borne bacterial diseases emerging in Europe. Clin Microbiol Infect 7:80–83

    Article  PubMed  CAS  Google Scholar 

  • Patrick CD, Hair JA (1978) White-tailed deer utilization of three different habitats and its influence on lone star tick populations. J Parasitol 64:1100–1106

    Article  Google Scholar 

  • Petrovec M, Lotric Furlan S, Zupanc TA, Strle F, Brouqui P, Roux V, Dumler JS (1997) Human disease in Europe caused by a granulocytic Ehrlichia species. J Clin Microbiol 35:1556–1559

    PubMed  CAS  Google Scholar 

  • Power AG, Mitchell CE (2004) Pathogen spillover in disease epidemics. Am Nat 164:79–89

    Article  Google Scholar 

  • Rand DA, Keeling MJ, Wilson HB (1995) Invasion, stability and evolution to criticality in spatially extended artificial host–pathogen ecologies. Proc R Soc Lond B Biol Sci 259:55–63

    Article  Google Scholar 

  • Randolf SE (2008) Tick-borne encephalitis incidence in Central and Eastern Europe: consequences of political transition. Microbes Infect 10:209–216

    Article  Google Scholar 

  • Randolf SE, Green RM, Hoodless AN, Peacey MF (2002) An empirical framework for seasonal population dynamics of the tick Ixodes ricinus. Int J Parasitol 31:979–989

    Article  Google Scholar 

  • Reid HW (1975) Experimental infection of the red grouse with Louping-ill virus (Flavivirus group) viraemia antibody response. J or Comp Pathol 85:231–235

    Article  Google Scholar 

  • Reid HW (1984) Epidemiology of louping-ill. In: Mayo MA, Harrap KH (eds) Tick Vectors in Virus Biology. Academic, New York, pp 161–178

    Google Scholar 

  • Reid HW, Duncan JS, Phillips JDP, Moss R, Watson A (1978) Studies of Louping-ill virus (Flavivirus group) in wild red grouse (Lagopus lagopus scoticus). J Hyg 81:321–329

    Article  CAS  Google Scholar 

  • Sachs JM (2002) The economic and social burden of malaria. Nature 415:680–685

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Matsuda H, Sasaki A (1994) Pathogen invasion and host extinction in lattice structured populations. J Math Biol 32:251–268

    Article  PubMed  CAS  Google Scholar 

  • Tisdell CA, Harrison SR, Ramsay GC (1999) The economic impacts of endemic diseases and disease control programmes. Rev Sci Tech 18:380–389

    PubMed  CAS  Google Scholar 

  • Van Buskirk J, Ostfeld RS (1998) Habitat heterogeneity, dispersal, and local risk of exposure to Lyme disease. Ecol Appl 8:365–378

    Article  Google Scholar 

  • Vassallo M, Paul REL, Perez-Ei (2000) Temporal distribution of the annual nymphal stock of Ixodes ricinus ticks. Experimental and Applied Acarology 24:941–949

    Article  Google Scholar 

  • Webb SD, Keeling MJ, Boots M (2007) Host–parasite interactions between the local and the mean-field: how and when does spatial population structure matter? J Theor Biol 249:140–152

    Article  PubMed  Google Scholar 

  • Woolhouse MEJ, Taylor LH, Haydon DT (2001) Population biology of multi-host pathogens. Science 292:1109–1112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by an Epidemiology, Population Health & Infectious Disease Control (EPIC) Centre of Excellence fellowship supported by the Scottish government, and supported and housed at the Macaulay Land Use and Research Institute (MLURI). We appreciate Dr J Booth for aiding the completion of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward O. Jones.

Appendix: Derivation of equations

Appendix: Derivation of equations

We will now describe how we attained the system equations.

Grouse and corresponding (attached) tick Eqs. 1521

Let \( G_\sigma^j\left( {x,t} \right) \) be the density of grouse with j ticks, where σ ∊ {S, I} and \( 0 \leqslant j \leqslant N \). Let \( G_R^{j,i}\left( {x,t} \right) \) be the density of recovered grouse with j susceptible and i infected ticks, respectively. We define the following

$$ {G_s} = \sum\limits_{j = 0}^N {G_s^j,{G_I} = \sum\limits_{j = 0}^N {G_I^j,{G_R} = } } \sum\limits_{k = 0}^N {\sum\limits_{j = 0}^N {G_R^{j,i}\quad and\quad G = {G_s} + {G_I} + {G_R}.} } $$

Equations describing the evolution of \( G_s^0\left( {x,t} \right) \) and \( G_I^0\left( {x,t} \right) \) over time can be written as

$$ \frac{{\partial G_s^0}}{{\partial t}} = {M_G}\frac{{{\partial^2}G_s^0}}{{\partial {x^2}}} + \left( {{a_g} - {s_g}G} \right)G - {b_g}G_s^0 - {\beta_g}G_s^0\left( {T_{\rm{off}}^s + T_{\rm{off}}^I} \right) + {\mu_g}G_s^1, $$
(15)
$$ \frac{{\partial G_I^0}}{{\partial t}} = {M_G}\frac{{{\partial^2}G_I^0}}{{\partial {x^2}}} - \left( {{b_g} + {\alpha_g} + {\gamma_g}} \right)G_I^0 - {\beta_g}G_I^0\left( {T_{\rm{off}}^s + T_{\rm{off}}^I} \right) + {\mu_g}G_s^1, $$
(16)

where we assume that all grouse can reproduce and each newborn is susceptible and has no ticks. Now, for \( N - 1 \geqslant j \geqslant 1 \), we have

$$ \begin{array}{*{20}{c}} {\frac{{\partial G_s^j}}{{\partial t}} = {M_G}\frac{{{\partial^2}G_s^j}}{{\partial {x^2}}} - {b_g}G_s^j + {\beta_g}G_s^{j - 1}\left( {T_{\rm{off}}^s + \left( {1 - \kappa } \right)T_{\rm{off}}^I} \right) - {\beta_g}G_s^jT_{\rm{off}}^s} \\{ - {\mu_g}G_s^j + {\mu_g}G_s^{j + 1} - {\beta_g}G_s^jT_{\rm{off}}^I,} \\\end{array} $$
(17)
$$ \begin{array}{*{20}{c}} {\frac{{\partial G_I^j}}{{\partial t}} = {M_G}\frac{{{\partial^2}G_I^j}}{{\partial {x^2}}} - \left( {{b_g} + {\alpha_g} + {\gamma_g}} \right)G_I^j + {\beta_g}G_I^{j - 1}\left( {T_{\rm{off}}^s + \kappa T_{\rm{off}}^I} \right) - {\beta_g}G_I^j\left( {T_{\rm{off}}^s + T_{\rm{off}}^I} \right)} \\{ - {\mu_g}G_I^j + {\mu_g}G_I^{j + 1} + {\beta_g}G_s^{j - 1}T_{\rm{off}}^I,} \\\end{array} $$
(18)

and for j = N

$$ \frac{{\partial G_s^N}}{{\partial t}} = {M_G}\frac{{{\partial^2}G_s^N}}{{\partial {x^2}}} - {b_g}G_s^N + {\beta_g}G_s^{N - 1}\left( {T_{\rm{off}}^s + \left( {1 - \kappa } \right)T_{\rm{off}}^I} \right) - {\mu_g}NG_s^N, $$
(19)
$$ \frac{{\partial G_I^N}}{{\partial t}} = {M_G}\frac{{{\partial^2}G_I^N}}{{\partial {x^2}}} - \left( {{b_g} + {\alpha_g} + {\gamma_g}} \right)G_I^N + {\beta_g}G_I^{N - 1}\left( {T_{\rm{off}}^s + T_{\rm{off}}^I} \right) - {\mu_g}NG_I^N + \kappa {\beta_g}G_s^{N - 1}T_{\rm{off}}^I. $$
(20)

Summing over 0 ≤ j ≤ N then gives the following

$$ \frac{{\partial {G_s}}}{{\partial t}} = {M_G}\frac{{{\partial^2}{G_s}}}{{\partial {x^2}}} + \left( {{a_g} - {s_g}G} \right)G - {b_g}{G_s} - \kappa T_{\rm{off}}^i{\beta_g}{G_s}, $$
(21)
$$ \frac{{\partial {G_I}}}{{\partial t}} = {M_G}\frac{{{\partial^2}{G_I}}}{{\partial {x^2}}} - \left( {{b_g} + {\alpha_g} + {\gamma_g}} \right){G_I} + \kappa T_{\rm{off}}^i{\beta_g}{G_s}. $$
(22)

Note that for the derivation of (22), we have used the following:

$$ - {\beta_g}\sum\limits_{j = 0}^{N - 1} {G_s^j = - {\beta_g}{G_s} + {\beta_g}G_s^N \approx - {\beta_g}{G_s}.} $$

That is, we have assumed that N is sufficiently large that the corresponding density \( G_s^N \) is small and can, therefore, be neglected to leading order. We define the following quantities

$$ {T_{{\rm{on}},s}} = \frac{{\sum\limits_{j = 1}^N {jG_s^j} }}{{\sum\limits_{j = 0}^N {G_s^j} }}\quad {\hbox{and}}\quad {T_{{\rm{on}},I}} = \frac{{\sum\limits_{j = 1}^N {jG_I^j} }}{{\sum\limits_{j = 0}^N {G_I^j} }} $$

to be the average number of (attached) ticks per susceptible and infected grouse, respectively. Rearranging gives

$$ {T_{{\rm{on}},s}}{G_s} = \sum\limits_{j = 1}^N {jG_s^j} \quad {\hbox{and}}\quad {T_{{\rm{on}},I}}{G_I} = \sum\limits_{j = 1}^N {jG_I^j.} $$
(23)

Differentiating with respect to time then gives

$$ \frac{{\partial {T_{{\rm{on}},\sigma }}}}{{\partial t}}{G_\sigma } + \frac{{\partial {G_\sigma }}}{{\partial t}}{T_{{\rm{on}},\sigma }} = \sum\limits_{j = 1}^N {j\frac{{\partial G_\sigma^j}}{{\partial t}},\,\sigma \in \left\{ {s,I} \right\}}, $$

which, upon substituting (21) and (15), (17), (19), yields

$$ \begin{array}{*{20}{c}} {\frac{{\partial {T_{{\rm{on}},s}}}}{{\partial t}}{G_s} + {T_{{\rm{on}},s}}\left[ {\left( {{a_g} - {s_g}G} \right)G - {b_g}{G_s} + {M_G}\frac{{{\partial^2}{G_s}}}{{\partial {x^2}}} - \kappa T_{\rm{off}}^i{\beta_g}{G_s}} \right]} \hfill \\{ = - {b_g}\sum\limits_{j = 1}^N {jG_s^j + {M_G}\sum\limits_{j = 1}^N {j\frac{{{\partial^2}G_s^j}}{{\partial {x^2}}} + {\beta_g}T_{\rm{off}}^s\sum\limits_{j = 0}^{N - 1} {G_s^j} } } } \hfill \\{ - \kappa {\beta_g}T_{\rm{off}}^I\sum\limits_{j = 1}^N {jG_s^j - {\mu_g}\sum\limits_{j = 1}^N {jG_s^j,} } } \hfill \\\end{array} $$
(24)

and, using (22) and (16), (18), (20),

$$ \begin{array}{*{20}{c}} {\frac{{\partial {T_{{\rm{on}},I}}}}{{\partial t}}{G_I} + {T_{{\rm{on}},I}}\left[ { - \left( {{b_g} + {\alpha_g} + {\gamma_g}} \right){G_I} + {M_G}\frac{{{\partial^2}{G_I}}}{{\partial {x^2}}} + \kappa T_{\rm{off}}^i{\beta_g}{G_s}} \right]} \hfill \\{ = - \left( {{b_g} + {\alpha_g} + {\gamma_g}} \right)\sum\limits_{j = 1}^N {jG_I^j + {M_G}\sum\limits_{j = 1}^N {j\frac{{{\partial^2}G_I^j}}{{\partial {x^2}}} + {\beta_g}\left( {T_{\rm{off}}^s + T_{\rm{off}}^I} \right)\sum\limits_{j = 0}^{N - 1} {G_I^j} } } } \hfill \\{ + \kappa {\beta_g}T_{\rm{off}}^I\sum\limits_{j = 1}^N {jG_s^{j - 1} - {\mu_g}\sum\limits_{j = 1}^N {jG_I^j} .} } \hfill \\\end{array} $$
(25)

Now differentiating the expressions in (23) twice with respect to x gives

$$ \frac{{{\partial^2}{T_{{\rm{on}},\sigma }}}}{{\partial {x^2}}}{G_\sigma } + 2\frac{{\partial {G_\sigma }}}{{\partial x}}\frac{{\partial {T_{{\rm{on}},\sigma }}}}{{\partial x}} + \frac{{{\partial^2}{G_\sigma }}}{{\partial {x^2}}}{T_{{\rm{on}},\sigma }} = \sum\limits_{j = 1}^N {j\frac{{{\partial^2}G_\sigma^j}}{{\partial {x^2}}}\,\sigma \in \left\{ {s,I} \right\}.} $$

Substitution into (24) and using (23) then simplifies (24), after a little re-arranging, to

$$ \frac{{\partial {T_{{\rm{on}},s}}}}{{\partial t}} = {M_G}\left( {\frac{{{\partial^2}{T_{{\rm{on}},s}}}}{{\partial {x^2}}} + \frac{2}{{{G_s}}}\frac{{\partial {G_s}}}{{\partial x}}\frac{{\partial {T_{{\rm{on}},s}}}}{{\partial x}}} \right) + T_{\rm{off}}^s{\beta_g} - {\mu_g}{T_{{\rm{on}},s}} - \frac{{{T_{{\rm{on}},s}}G}}{{{G_s}}}\left( {{a_g} - {s_g}G} \right). $$
(26)

The rationale behind the unattachment of ticks is that each individual tick has a mean feeding time of 1/μg and the rate of detachment will be the inverse of this value. Therefore, if there are j ticks on the host, then total rate of detachment will be j times this value, namely, jμg.

Similarly, (25) becomes

$$ \begin{array}{*{20}{c}} {\frac{{\partial {T_{{\rm{on}},I}}}}{{\partial t}} = {M_G}\left( {\frac{{{\partial^2}{T_{{\rm{on}},I}}}}{{\partial {x^2}}} + \frac{2}{{{G_I}}}\frac{{\partial {G_I}}}{{\partial x}}\frac{{\partial {T_{{\rm{on}},I}}}}{{\partial x}}} \right) + \left( {T_{\rm{off}}^s + T_{\rm{off}}^I} \right){\beta_g}} \hfill \\{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad - {\mu_g}{T_{{\rm{on}},I}} + \frac{{\kappa {G_s}{\beta_g}T_{\rm{off}}^i}}{{{G_I}}}\left[ {\left( {{T_{{\rm{on}},s}} + 1} \right) - {T_{{\rm{on}},I}}} \right].} \hfill \\\end{array} $$
(27)

Note that we have again used the assumption that \( G_s^N \) is small, so that \( \sum\nolimits_{j = 0}^{N - 1} {G_s^j} \) approximates to G s .

The equation for G R can be derived in a similar way. Namely, we have:

$$ \frac{{\partial G_R^{0,0}}}{{\partial t}} = {M_G}\frac{{{\partial^2}G_R^{0,0}}}{{\partial {x^2}}} - {b_g}G_R^{0,0} + {\gamma_g}G_I^0 - {\beta_g}G_R^{0,0}\left( {T_{off}^s + T_{off}^I} \right) + {\mu_g}\left( {G_R^{1,0} + G_R^{0,1}} \right); $$
(28)

for 1 ≤ i ≤ N−1,

$$ \begin{array}{*{20}{c}} {\frac{{\partial G_R^{0,i}}}{{\partial t}} = {M_G}\frac{{{\partial^2}G_R^{0,i}}}{{\partial {x^2}}} - {b_g}G_R^{0,i} + {\gamma_g}G_I^i - {\beta_g}G_R^{0,i}\left( {T_{\rm{off}}^s + T_{\rm{off}}^I} \right) + {\beta_g}G_R^{0,i - 1}T_{\rm{off}}^I} \hfill \\{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad - i{\mu_g}G_R^{0,i} + {\mu_g}G_R^{1,i} + \left( {i + 1} \right){\mu_g}G_R^{0,i + 1};} \hfill \\\end{array} $$
(29)

for 1 ≤ jN−1,

$$ \begin{array}{*{20}{c}} {\frac{{\partial G_R^{j,0}}}{{\partial t}} = {M_G}\frac{{{\partial^2}G_R^{j,0}}}{{\partial {x^2}}} - {b_g}G_R^{j,0} - {\beta_g}G_R^{j,0}\left( {T_{\rm{off}}^s + T_{\rm{off}}^I} \right) + {\beta_g}G_R^{j - 1,0}T_{\rm{off}}^s} \hfill \\{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad - j{\mu_g}G_R^{j,0} + {\mu_g}G_R^{j,1} + \left( {j + 1} \right){\mu_g}G_R^{j + 1,0};} \hfill \\\end{array} $$
(30)
$$ \frac{{\partial G_R^{0,N}}}{{\partial t}} = {M_G}\frac{{{\partial^2}G_R^{0,N}}}{{\partial {x^2}}} - {b_g}G_R^{0,N} + {\gamma_g}G_I^N - {\beta_g}G_R^{0,N}T_{\rm{off}}^s + {\beta_g}G_R^{0,N - 1}T_{\rm{off}}^I + {\mu_g}G_R^{1,N} - {\mu_g}NG_R^{0,N}; $$
(31)
$$ \frac{{\partial G_R^{N,0}}}{{\partial t}} = {M_G}\frac{{{\partial^2}G_R^{N,0}}}{{\partial {x^2}}} - {b_g}G_R^{N,0} - {\beta_g}G_R^{N,0}T_{\rm{off}}^I + {\beta_g}G_R^{N - 1,0}T_{\rm{off}}^s + {\mu_g}G_R^{N,1} - {\mu_g}NG_R^{N,0}; $$
(32)

for 1 ≤ iN-1,

$$ \begin{array}{*{20}{c}} {\frac{{\partial G_R^{N,i}}}{{\partial t}} = {M_G}\frac{{{\partial^2}G_R^{N,i}}}{{\partial {x^2}}} - {b_g}G_R^{N,i} + {\beta_g}G_R^{N - 1,i}T_{\rm{off}}^s + {\beta_g}G_R^{N,i - 1}T_{\rm{off}}^I - {\beta_g}G_R^{N,i}T_{\rm{off}}^I} \hfill \\{ - N{\mu_g}G_R^{N,i} - i{\mu_g}G_R^{N,i} + \left( {i + 1} \right){\mu_g}G_R^{N,i + 1};} \hfill \\\end{array} $$
(33)

for 1 ≤ jN−1,

$$ \begin{array}{*{20}{c}} {\frac{{\partial G_R^{j,N}}}{{\partial t}} = {M_G}\frac{{{\partial^2}G_R^{j,N}}}{{\partial {x^2}}} - {b_g}G_R^{j,N} + {\beta_g}G_R^{j - 1,N}T_{\rm{off}}^s + {\beta_g}G_R^{j,N - 1}T_{\rm{off}}^I - {\beta_g}G_R^{j,N}T_{\rm{off}}^s} \hfill \\{ - j{\mu_g}G_R^{j,N} - N{\mu_g}G_R^{j,N} + \left( {j + 1} \right){\mu_g}G_R^{j + 1,N};} \hfill \\\end{array} $$
(34)
$$ \frac{{\partial G_R^{N,N}}}{{\partial t}} = {M_G}\frac{{{\partial^2}G_R^{N,N}}}{{\partial {x^2}}} - {b_g}G_R^{N,N} + {\beta_g}G_R^{N - 1,N}T_{\rm{off}}^s + {\beta_g}G_R^{N,N - 1}T_{\rm{off}}^I - 2N{\mu_g}G_R^{N,N}; $$
(35)

for 1 ≤ j,i ≤N −1,

$$ \begin{array}{*{20}{c}} {\frac{{\partial G_R^{j,i}}}{{\partial t}} = {M_G}\frac{{{\partial^2}G_R^{j,i}}}{{\partial {x^2}}} - {b_g}G_R^{j,i} + {\beta_g}G_R^{j - 1,i}T_{\rm{off}}^s + {\beta_g}G_R^{j,i - 1}T_{\rm{off}}^I - {\beta_g}G_R^{j,i}\left( {T_{\rm{off}}^s + T_{\rm{off}}^I} \right)} \hfill \\{ - \left( {j + i} \right){\mu_g}G_R^{j,i} - \left( {j + 1} \right){\mu_g}G_R^{j + 1,i} + \left( {i + 1} \right){\mu_g}G_R^{j,i + 1}.} \hfill \\\end{array} $$
(36)

Summing over 0 ≤ j,iN then gives

$$ \frac{{\partial {G_R}}}{{\partial t}} = {M_G}\frac{{{\partial^2}{G_R}}}{{\partial {x^2}}} - {b_g}{G_R} + {\gamma_g}{G_I}. $$
(37)

We define the following quantities

$$ T_{{\rm{on}},R}^s = \frac{{\sum\limits_{j = 1}^N {j\sum\limits_{i = 0}^N {G_R^{j,i}} } }}{{\sum\limits_{j,i = 0}^N {G_R^{j,i}} }}\quad {\hbox{and}}\quad T_{{\rm{on}},R}^I = \frac{{\sum\limits_{i = 1}^N i \sum\limits_{j = 0}^N {G_R^{j,i}} }}{{\sum\limits_{j,i = 0}^N {G_R^{j,i}} }} $$

to be the average number of (attached) susceptible and infected ticks per recovered grouse, respectively. Rearranging gives

$$ T_{{\rm{on}},R}^s{G_R} = \sum\limits_{j = 1}^N {j\sum\limits_{i = 0}^N {G_R^{j,i}} } \quad {\hbox{and}}\quad T_{{\rm{on}},R}^I{G_R} = \sum\limits_{i = 1}^N {j\sum\limits_{j = 0}^N {G_R^{j,i}.} } $$
(38)

Differentiating these expressions give

$$ \frac{{\partial T_{{\rm{on}},R}^s}}{{\partial t}}{G_R} + \frac{{\partial {G_R}}}{{\partial t}}T_{{\rm{on}},R}^s = \sum\limits_{j = 1}^N {\sum\limits_{i = 0}^N {j\frac{{\partial G_R^{j,i}}}{{\partial t}},} } $$
(39)
$$ \frac{{\partial T_{{\rm{on}},R}^I}}{{\partial t}}{G_R} + \frac{{\partial {G_R}}}{{\partial t}}T_{{\rm{on}},R}^I = \sum\limits_{i = 1}^N {\sum\limits_{j = 0}^N {i\frac{{\partial G_R^{j,i}}}{{\partial t}},} } $$
(40)
$$ \frac{{{\partial^2}T_{{\rm{on}},R}^s}}{{\partial {x^2}}}{G_R} + 2\frac{{\partial {G_R}}}{{\partial x}}\frac{{\partial T_{{\rm{on}},R}^s}}{{\partial x}} + \frac{{{\partial^2}{G_R}}}{{\partial {x^2}}}T_{{\rm{on}},R}^s = \sum\limits_{j = 1}^N {\sum\limits_{i = 0}^N {j\frac{{{\partial^2}G_R^{j,i}}}{{\partial {x^2}}},} } $$
(41)
$$ \frac{{{\partial^2}T_{{\rm{on}},R}^I}}{{\partial {x^2}}}{G_R} + 2\frac{{\partial {G_R}}}{{\partial x}}\frac{{\partial T_{{\rm{on}},R}^I}}{{\partial x}} + \frac{{{\partial^2}{G_R}}}{{\partial {x^2}}}T_{{\rm{on}},R}^I = \sum\limits_{i = 1}^N {\sum\limits_{j = 0}^N {i\frac{{{\partial^2}G_R^{j,i}}}{{\partial {x^2}}}.} } $$
(42)

Substituting (37) and (28) to (36) into (39) then yields, after a little re-arranging

$$ \begin{array}{*{20}{c}} {\frac{{\partial T_{{\rm{on}},R}^s}}{{\partial t}}{G_R} + T_{{\rm{on}},R}^s\left[ { - {b_g}{G_R} + {\gamma_g}{G_I} + {M_G}\frac{{{\partial^2}{G_R}}}{{\partial {x^2}}}} \right]} \hfill \\{ = - {b_g}\sum\limits_{j = 1}^N {\sum\limits_{i = 0}^N {jG_R^{j,i} + {M_G}\sum\limits_{j = 1}^N {\sum\limits_{i = 0}^N {j\frac{{{\partial^2}G_R^{j,i}}}{{\partial {x^2}}}} } } } } \hfill \\{ + {\beta_g}T_{\rm{off}}^s\sum\limits_{j = 0}^{N - 1} {\sum\limits_{i = 0}^N {G_R^{j,i} - {\mu_g}\sum\limits_{j = 1}^N {\sum\limits_{i = 0}^N {jG_R^{j,i}.} } } } } \hfill \\\end{array} $$
(43)

Substituting (41), we then obtain

$$ \frac{{\partial T_{{\rm{on}},R}^s}}{{\partial t}} = {M_G}\left( {\frac{{{\partial^2}T_{{\rm{on}},R}^s}}{{\partial {x^2}}} + \frac{2}{{{G_R}}}\frac{{\partial {G_R}}}{{\partial x}}\frac{{\partial T_{{\rm{on}},R}^s}}{{\partial x}}} \right) + T_{\rm{off}}^s{\beta_g} - {\mu_g}T_{{\rm{on}},R}^s - \frac{{{\gamma_g}T_{{\rm{on}},R}^s{G_I}}}{{{G_R}}}, $$
(44)

assuming, similar to above, that N is sufficiently large so that \( \sum\nolimits_{i = 0}^N {\sum\nolimits_{j = 0}^{N - 1} {G_R^{j,i} \approx {G_R}} } \). Similarly, substituting (37) and (28) to (36) into (40) and using (42), we get

$$ \begin{array}{*{20}{c}} {\frac{{\partial T_{{\rm{on}},R}^I}}{{\partial t}}{G_R} + T_{{\rm{on}},R}^I\left[ { - {b_g}{G_R} + {\gamma_g}{G_I} + {M_G}\frac{{{\partial^2}{G_R}}}{{\partial {x^2}}}} \right]} \hfill \\{ = - {b_g}\sum\limits_{i = 1}^N {\sum\limits_{j = 0}^N {iG_R^{j,i} + {M_G}\sum\limits_{i = 0}^N {\sum\limits_{j = 0}^N {i\frac{{{\partial^2}G_R^{j,i}}}{{\partial {x^2}}} + {\gamma_g}\sum\limits_{i = 1}^N {iG_I^i} } } } } } \hfill \\{ + {\beta_g}T_{\rm{off}}^I\sum\limits_{i = 0}^{N - 1} {\sum\limits_{j = 0}^N {G_R^{j,i} - {\mu_g}\sum\limits_{i = 1}^N {\sum\limits_{j = 0}^N {iG_R^{j,i},} } } } } \hfill \\\end{array} $$
(45)

and

$$ \frac{{\partial T_{{\rm{on}},R}^I}}{{\partial t}} = {M_G}\left( {\frac{{{\partial^2}T_{{\rm{on}},R}^I}}{{\partial {x^2}}} + \frac{2}{{{G_R}}}\frac{{\partial {G_R}}}{{\partial x}}\frac{{\partial T_{{\rm{on}},R}^I}}{{\partial x}}} \right) + T_{\rm{off}}^I{\beta_g} - {\mu_g}T_{{\rm{on}},R}^I + \frac{{{\gamma_g}{G_I}}}{{{G_R}}}\left( {{T_{{\rm{on}},I}} - T_{{\rm{on}},R}^I} \right), $$
(46)

assuming that \( \sum\nolimits_{j = 0}^N {\sum\nolimits_{i = 0}^{N - 1} {G_R^{j,i} \approx {G_R}} } \).

Deer Eqs. 2223

Let D j (x, t) be the density of deer with j ticks, 0 ≤ jN. Note that attached ticks can be either susceptible or infected. Note also that, in this case, we also assume density dependence on tick uptake. Specifically, we assume that the uptake rate, β D , is given by

$$ {\beta_D}(j) = {\beta_D}\left( {1 - \frac{j}{N}} \right). $$

That is, uptake rate decreases monotonically as the number of already attached ticks increases, representing a limit of tick occupancy space on the deer. We take \( {\beta_D}\left( {j > N} \right) = 0 \).

An equation describing the evolution of \( {D^0}\left( {x,t} \right) \) over time can be written as

$$ \frac{{\partial {D^0}}}{{\partial t}} = {M_D}\frac{{{\partial^2}{D^0}}}{{\partial {x^2}}} + \left( {{a_D} - {s_D}D} \right)D - {b_D}{D^0} - {\beta_D}{D^0}\left( {T_{\rm{off}}^s + T_{\rm{off}}^I} \right) + {\mu_g}{D^1}, $$
(47)

where \( D = \sum\nolimits_{j = 0}^N {{D^j}} \) and we assume, as for grouse, a logistic growth rate for deer and with each newborn having no ticks. For \( N - 1 \geqslant j \geqslant 1 \), we have

$$ \begin{array}{*{20}{c}} {\frac{{\partial {D^j}}}{{\partial t}} = {M_D}\frac{{{\partial^2}{D^j}}}{{\partial {x^2}}} - {b_D}{D^j} + {\beta_D}\left( {1 - \frac{{\left( {j - 1} \right)}}{N}} \right){D^{j - 1}}\left( {T_{\rm{off}}^s + T_{\rm{off}}^I} \right) - {\beta_D}\left( {1 - \frac{j}{N}} \right){D^j}\left( {T_{\rm{off}}^s + T_{\rm{off}}^I} \right)} \hfill \\{\quad \quad \quad \quad \quad \quad \quad \;\,16ex - {\mu_D}j{D^j} + {\mu_D}\left( {j + 1} \right){D^{j + 1}},} \hfill \\\end{array} $$
(48)

and for j=N

$$ \frac{{\partial {D^N}}}{{\partial t}} = {M_D}\frac{{{\partial^2}{D^N}}}{{\partial {x^2}}} - {b_D}{D^N} + {\beta_D}{D^{N - 1}}\left( {1 - \frac{{\left( {N - 1} \right)}}{N}} \right)\left( {T_{\rm{off}}^s + T_{\rm{off}}^I} \right) - {\mu_g}N{D^N}. $$
(49)

Summing over \( 0 \leqslant j \leqslant N \) gives the following

$$ \frac{{\partial D}}{{\partial t}} = {M_D}\frac{{{\partial^2}D}}{{\partial {x^2}}} + \left( {{a_D} - {s_D}D} \right)D - {b_g}D. $$
(50)

Similar to before, we define

$$ {T_{{\rm{on}},D}} = \frac{{\sum\limits_{j = 1}^N {j{D^j}} }}{{\sum\limits_{j = 0}^N {{D^j}} }} $$

to be the average number of (attached) ticks per deer, so that

$$ {T_{{\rm{on}},D}}D = \sum\limits_{j = 1}^N {j{D^j}.} $$
(51)

Differentiating then gives

$$ \frac{{\partial {T_{{\rm{on}},D}}}}{{\partial t}}D + \frac{{\partial D}}{{\partial t}}{T_{{\rm{on}},D}} = \sum\limits_{j = 1}^N {j\frac{{\partial {D^j}}}{{\partial t}},} $$

and

$$ \frac{{{\partial^2}{T_{{\rm{on}},D}}}}{{\partial {x^2}}}D + 2\frac{{\partial D}}{{\partial x}}\frac{{\partial {T_{{\rm{on}},D}}}}{{\partial x}} + \frac{{{\partial^2}D}}{{\partial {x^2}}}{T_{{\rm{on}},D}} = \sum\limits_{j = 1}^N {j\frac{{{\partial^2}{D^j}}}{{\partial {x^2}}}}, $$

which, upon substituting (50) and (47) to (51), yields

$$ \begin{array}{*{20}{c}} {\frac{{\partial {T_{{\rm{on}},D}}}}{{\partial t}}D + {T_{{\rm{on}},D}}\left[ {\left( {{a_D} - {s_D}D} \right)D - {b_D}D + {M_D}\frac{{{\partial^2}D}}{{\partial {x^2}}}} \right]} \hfill \\{ = - {b_D}\sum\limits_{j = 1}^N {j{D^j} + {M_D}\sum\limits_{j = 1}^N {j\frac{{{\partial^2}{D^j}}}{{\partial {x^2}}}} } } \hfill \\{ + {\beta_D}\left( {T_{\rm{off}}^s + T_{\rm{off}}^I} \right)\sum\limits_{j = 0}^{N - 1} {\left( {1 - \frac{j}{N}} \right){D^j} - {\mu_D}\sum\limits_{j = 1}^N {j{D^j},} } } \hfill \\\end{array} $$
(52)

which simplifies to

$$ \frac{{\partial {T_{on,D}}}}{{\partial t}} = {M_D}\left( {\frac{{{\partial^2}{T_{\rm{on}}}}}{{\partial {x^2}}} + \frac{2}{D}\frac{{\partial D}}{{\partial x}}\frac{{\partial {T_{{\rm{on}},D}}}}{{\partial x}}} \right) + {\beta_D}\left( {T_{\rm{off}}^s + T_{\rm{off}}^I} \right)\left( {1 - \frac{{{T_{{\rm{on}},D}}}}{N}} \right) - {\mu_D}{T_{{\rm{on}},D}} - {T_{{\rm{on}},D}}\left( {{a_D} - {s_D}D} \right). $$
(53)

Questing tick Eqs. 2425

Summing the uptake and drop-off terms from above gives the following

$$ \begin{array}{*{20}{c}} {\frac{{\partial T_{\rm{off}}^s}}{{\partial t}} = - T_{\rm{off}}^s\sum\limits_{j = 0}^{N - 1} {\left( {{\beta_g}\left[ {G_s^j + G_I^j + \sum\limits_{i = 0}^N {G_R^{j,i}} } \right] + {\beta_D}\left( {1 - \frac{j}{N}} \right){D^j}} \right)} } \hfill \\{\quad \quad \quad + {\mu_g}\sum\limits_{j = 1}^N {j\left( {G_s^j + \sum\limits_{i = 0}^N {G_R^{j,i}} } \right) + {\rho_t}{\mu_D}\sum\limits_{j = 1}^N {j{D^j} - {b_T}T_{\rm{off}}^s.} } } \hfill \\\end{array} $$
(54)

Note that we have additionally assumed a linear death term for ticks, with constant rate b T and a proliferative rate ρ t as the ticks drop-off deer (taking the newborn ticks to be susceptible).

From (54), again taking for simplicity \( \sum\nolimits_{j = 0}^{N - 1} {G_s^j \approx {G_s}} \), \( \sum\nolimits_{j = 0}^{N - 1} {G_I^j \approx {G_I}} \), \( \sum\nolimits_{j = 0}^{N - 1} {\sum\nolimits_{i = 0}^N {G_R^{j,i} \approx {G_R}} } \), we obtain the leading order expression

$$ \begin{array}{*{20}{c}} {\frac{{\partial T_{\rm{off}}^s}}{{\partial t}} = - T_{\rm{off}}^s\left( {{\beta_g}G + {\beta_D}D\left( {1 - \frac{{{T_{{\rm{on}},D}}}}{N}} \right)} \right) + {\mu_g}\left( {{T_{{\rm{on}},s}}{G_s} + T_{{\rm{on}},R}^s{G_R}} \right)} \hfill \\{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad + {\rho_t}{\mu_D}{T_{{\rm{on}},D}}D - {b_T}T_{\rm{off}}^s.} \hfill \\\end{array} $$
(55)

Similarly, we can write

$$ \begin{array}{*{20}{c}} {\frac{{\partial T_{\rm{off}}^I}}{{\partial t}} = - T_{\rm{off}}^I\sum\limits_{i = 0}^{N - 1} {\left( {{\beta_g}\left[ {G_s^i + G_I^i + \sum\limits_{j = 0}^N {G_R^{j,i}} } \right] + {\beta_D}\left( {1 - \frac{i}{N}} \right){D^i}} \right)} } \hfill \\{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad + {\mu_g}\sum\limits_{i = 1}^N i \left( {G_I^i + \sum\limits_{j = 0}^N {G_R^{j,i}} } \right) - \left( {{b_T} + {\alpha_T}} \right)T_{\rm{off}}^I,} \hfill \\\end{array} $$
(56)

where α T denotes the rate of tick virulence due to infection. Simplifying, gives to leading order

$$ \begin{array}{*{20}{c}} {\frac{{\partial T_{\rm{off}}^I}}{{\partial t}} = - T_{\rm{off}}^I\left( {{\beta_g}G + {\beta_D}D\left( {1 - \frac{{{T_{{\rm{on}},D}}}}{N}} \right)} \right)} \hfill \\{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad + {\mu_g}\left( {{T_{{\rm{on}},I}}{G_I} + T_{{\rm{on}},R}^I{G_R}} \right) - \left( {{b_T} + {\alpha_T}} \right)T_{\rm{off}}^I} \hfill \\\end{array} $$
(57)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, E.O., Webb, S.D., Ruiz-Fons, F.J. et al. The effect of landscape heterogeneity and host movement on a tick-borne pathogen. Theor Ecol 4, 435–448 (2011). https://doi.org/10.1007/s12080-010-0087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-010-0087-8

Keywords

Navigation