Skip to main content
Log in

Size dependence of the bulk modulus of Si nanocrystals

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

This study investigates the effect of size on bulk modulus and its related parameters, including melting temperature and mass density based on the ratio number of surface atoms to that of its internal. The equation of bulk modulus in the bulk state B(∞) is modified to include the related size-dependent parameters without any adjustable parameter, and is applied to Si nanocrystals. The bulk modulus B(r) decreases from 9.8 × 1010 N m2 for the bulk state to 5.93 × 1010 N m2 for a 5 nm diameter of Si nanoparticles. An inherent relation between bulk modulus and change of the lattice parameter in nanocrystals obtained from the variation in the surface to volume ratio, this leads to increase in the mean bond length. The effect of mass density and melting temperature on bulk modulus are also discussed. Calculated results for bulk modulus are verified by experimental as well as the available computer simulation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sun C Q 2009 Thermo-mechanical behavior of low-dimensional systems: The local bond average approach. Prog. Mater. Sci. 54: 179–307

    Article  Google Scholar 

  2. Gleiter H 2000 Nanostructured materials: basic concepts and microstructure. Acta Materialia 48: 1–29

    Article  Google Scholar 

  3. Zhao M and Jiang Q 2010 Size effect on thermal properties in low-dimensional materials. Key Engineering Materials, Trans Tech Publications, 189–218

    Google Scholar 

  4. Zhang Z, Zhao M and Jiang Q 2001 Melting temperatures of semiconductor nanocrystals in the mesoscopic size range. Semicond. Sci. Technol. 16:L33

    Article  Google Scholar 

  5. Qi W 2005 Size effect on melting temperature of nanosolids. Physica B: Condens. Matter. 368: 46–50

    Article  Google Scholar 

  6. Zhu Y, Lian J and Jiang Q 2009 Modeling of the melting point, Debye temperature, thermal expansion coefficient, and the specific heat of nanostructured materials. J. Phys. Chem. C 113: 16896–16900

    Article  Google Scholar 

  7. Lu H, Li P, Cao Z and Meng X 2009 Size-, shape-, and dimensionality-dependent melting temperatures of nanocrystals. J. Phys. Chem. C 113: 7598–7602

    Article  Google Scholar 

  8. Hou M, Elazzaoui M, Pattyn H, Verheyden J, Koops, G and Zhang G 2000 Growth and lattice dynamics of Co nanoparticles embedded in Ag: a combined molecular-dynamics simulation and Mössbauer study. Phys. Rev. B 62: 5117

    Article  Google Scholar 

  9. Yang C, Xiao M, Li W and Jiang Q 2006 Size effects on Debye temperature, Einstein temperature, and volume thermal expansion coefficient of nanocrystals. Solid State Communications 139: 148–152

    Article  Google Scholar 

  10. Abdullah B J, Omar M S and Jiang Q 2017 Size effects on cohesive energy, Debye temperature and lattice heat capacity from first-principles calculations of Sn nanoparticles. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 1-4

  11. Kittel C 2005 Introduction to solid state physics. Wiley, Hoboken, 25

    MATH  Google Scholar 

  12. Koc H, Mamedov A M, Deligoz E and Ozisik H 2012 First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds. Solid State Sci. 14: 1211–1220

    Article  Google Scholar 

  13. Gacem A, Doghmane A and Hadjoub Z 2011 Quantification the Effect of the Thickness of Thin Films on their Elastic Parameters. Adv. Mater. Res. Trans. Tech. Pub. 93–96

    Article  Google Scholar 

  14. Qiao Z, Latz R and Mergel D 2004 Thickness dependence of In2O3: Sn film growth. Thin Solid Films 466: 250–258

    Article  Google Scholar 

  15. Safaei A 2012 Size-dependent mass density of nanocrystals. Nano 7: 1250009

    Article  Google Scholar 

  16. Lovell S and Rollinson E 1968 Density of thin films of vacuum evaporated metals. Nature 218: 1179–1180

    Article  Google Scholar 

  17. Gu M, Sun C Q, Chen Z, Yeung T A, LI S, Tan C and Nosikn V 2007 Size, temperature, and bond nature dependence of elasticity and its derivatives on extensibility, Debye temperature, and heat capacity of nanostructures. Phys. Rev. B 75: 125403

    Article  Google Scholar 

  18. Zhao M and Jiang Q 2004 Melting and surface melting of low-dimensional in crystals. Solid State Commun. 130: 37–39

    Article  Google Scholar 

  19. Liang L and Li B 2006 Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys. Rev. B 73: 153303

    Article  Google Scholar 

  20. Avramov I and Michailov M 2008 Specific heat of nanocrystals. J. Phys. Condens. Matter. 20: 295224

    Google Scholar 

  21. Omar M 2012 Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials. Mater. Res. Bull. 47: 3518–3522

    Article  Google Scholar 

  22. Omar M 2007 Lattice thermal expansion for normal tetrahedral compound semiconductors. Mater. Res. Bull. 42: 319–326

    Article  Google Scholar 

  23. Jiang Q, Shi H and Zhao M 1999 Melting thermodynamics of organic nanocrystals. J. Chem. Phys. 111: 2176–2180

    Article  Google Scholar 

  24. Zhang Z, Li J and Jiang Q 2000 Modelling for size-dependent and dimension-dependent melting of nanocrystals. J. Phys. D Appl. Phys. 33: 2653

    Article  Google Scholar 

  25. Shen T D, Zhang J and Zhao Y 2008 What is the theoretical density of a nanocrystalline material? Acta Materialia 56: 3663–3671

    Article  Google Scholar 

  26. Abdullah B J, Jiang Q and Omar M S 2016 Effects of size on mass density and its influence on mechanical and thermal properties of ZrO2 nanoparticles in different structures. Bull. Mater. Sci. 39: 1295–1302

    Article  Google Scholar 

  27. Lam P K, Cohen M L and Martinez G 1987 Analytic relation between bulk moduli and lattice constants. Phys. Rev. B 35: 9190–9194

    Article  Google Scholar 

  28. Bievere P D, Valkiers S, Peiser S, Becker P, Ludicke F, Spieweck F and Stumpel J 1995 A more accurate value for the Avogadro constant. IEEE Trans. Instrum. Meas. 44: 530–532

    Article  Google Scholar 

  29. Goldstein A N 1996 The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors. Appl. Phys. A 62: 33–37

    Article  Google Scholar 

  30. Kang K and Cai W 2010 Size and temperature effects on the fracture mechanisms of silicon nanowires: Molecular dynamics simulations. Int. J. Plast. 26: 1387–1401

    Article  Google Scholar 

  31. Wolf H F 1971 Semiconductors. Wiley, Hoboken, 128

    Google Scholar 

  32. Cherian R, Gerard C, Mahadevan P, Cuong N T and Maezono R 2010 Size dependence of the bulk modulus of semiconductor nanocrystals from first-principles calculations. Phys. Rev. B 82: 235321

    Article  Google Scholar 

  33. Zhu Y, Zheng W and Jiang Q 2009 Modeling lattice expansion and cohesive energy of nanostructured materials. Appl. Phys. Lett. 95: 083110

    Article  Google Scholar 

  34. Siegel J, Lyutakov O, Rybka V, Kolská Z and Svorcík V 2011 Properties of gold nanostructures sputtered on glass. Nanoscale Res. Lett. 6: 96

    Article  Google Scholar 

  35. Opalinska A, Malka I, Dzwolak W, Chudoba T, Presz A and Lojkowski W 2015 Size-dependent density of zirconia nanoparticles. Beilstein J. Nanotechnol. 6: 27–35

    Article  Google Scholar 

  36. Banerjee R, Sperling E A, Thompson G B, Fraser H L, Bose S and Ayyub P 2003 Lattice expansion in nanocrystalline niobium thin films. Appl. Phys. Lett. 82: 4250–4252

    Article  Google Scholar 

  37. Chattopadhyay P P, Nambissan P M G, Pabi S K and Manna I 2001 Polymorphic bcc to fcc transformation of nanocrystalline niobium studied by positron annihilation. Phys. Rev. B 63: 054107

    Article  Google Scholar 

Download references

Acknowledgement

The financial support from Ministry of Higher Education and Scientific Research- Salahaddin-Erbil University with the cooperation of Jilin University are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B J Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, B.J., Omar, M.S. & Jiang, Q. Size dependence of the bulk modulus of Si nanocrystals. Sādhanā 43, 174 (2018). https://doi.org/10.1007/s12046-018-0956-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-018-0956-1

Keywords

Navigation