Skip to main content
Log in

Tool position tracking control of a nonlinear uncertain flexible robot manipulator by using robust H2/H controller via T–S fuzzy model

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

In this paper, a robust H2/H control with regional Pole-Placement is considered for tool position control of a nonlinear uncertain flexible robot manipulator. The uncertain nonlinear system is first approximated by Takagi and Sugeno’s (T–S) fuzzy model. To achieve a better tracking, an extra state (error of tracking) is then augmented to the T–S model. Based on each local linear subsystem with augmented state, a regional pole-placement state feedback H2/H controller is properly designed via linear matrix inequality (LMI) approach. Parallel Distributed Compensation (PDC) is also used to establish the whole controller for the overall system and the total linear system is obtained by using the weighted sum of the local linear systems. A fuzzy weighted online computation (FWOC) component is employed to update fuzzy weights in real time for different operating points of the system. Simulation results are presented to validate the effectiveness of the proposed controller like robustness and good load disturbance attenuation and accurate tracking, even in the presence of parameter variations and also load disturbances on the motor and the tool. The superiority of the proposed control scheme is finally highlighted in comparison with the Quantitative feedback theory (QFT) controller, the QFT controller of order 13, a polynomial controller and the so-called linear sliding-mode controller methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Asemani M H and Majd V J 2013 A robust H\(\infty \) observer-based controller design for uncertain T–S fuzzy systems with unknown premise variables via LMI. Fuzzy Sets Syst. 212: 21–40

    Article  MATH  MathSciNet  Google Scholar 

  • Assawinchaichote W, Sing Kiong Nguang and Peng Shi 2006 Fuzzy control and filter design for uncertain fuzzy systems. Springer-Verlag Berlin Heidelberg

  • Azimi V, Akhlaghi P and Kazimi M H 2011 Robust multi objective H2/H\(\infty \) control of nonlinear uncertain systems using multiple linear model and ANFIS. Chinese Control and Decision Conference (CCDC), China, 2011

  • Azimi V, Fakharian A and Menhaj M B 2012a Robust mixed-sensitivity gain-scheduled H8 tracking control of a nonlinear time-varying IPMSM via a T-S fuzzy model. 9th France-Japan & 7th Europe-Asia Congress on and Research and Education in Mechatronics REM), France

  • Azimi V, Fakharian A and Menhaj M B 2013a Position and current control of a permanent-magnet synchronous motor by using loop-shaping methodology: Blending of H\(_{\infty }\) mixed-sensitivity problem and T-S fuzzy model scheme. J. Dyn. Syst. Meas. Control-Trans. ASME 135(5): 051006–1–051006-11

    Article  Google Scholar 

  • Azimi V, Nekoui M A and Fakharian A 2012b Robust multi-objective H2/ H\(\infty \) tracking control based on T-S fuzzy model for a class of nonlinear uncertain drive systems. Proc. Inst. Mech. Eng. I-J. Syst. Control Eng. 226(8): 1107–1118

    Google Scholar 

  • Azimi V, Nekoui M A and Fakharian A 2012c Speed and torque control of induction motor by using robust H\(_{\infty }\) mixed-sensitivity problem via T-S fuzzy model. Iranian Conference on Electrical Engineering (ICEE), Iran, 2012

  • Azimi V, Menhaj M B and Fakharian A 2013b Robust H2/8 control for a robust manipulator fuzzy system. 13th Iranian Conference on Fuzzy Systems (IFSC), Iran, 2013

  • Chen B -S and Wu C -H 2010 Robust optimal reference-tracking design method for stochastic synthetic biology systems: T-S fuzzy approach. Fuzzy Syst. IEEE Trans. 18(6): 1144–1159

    Article  Google Scholar 

  • El-Mahallawy A A et al 2011 Robust flight control system design using H\(\infty \) loop-shaping and recessive trait crossover genetic algorithm. Expert Syst. Appl. 38(1): 169–174

    Article  Google Scholar 

  • Fakharian A and Azimi V 2012 Robust mixed-sensitivity H8 control for a class of MIMO uncertain nonlinear IPM synchronous motor via T-S fuzzy model, Methods and Models in Automation and Robotics (MMAR), Poland, 2012

  • Gahinet P, Nemirovski A, Laub A J and Chilali M 1995 LMI control toolbox. Math Works

  • Gu D -W, Petkov P H. and Konstantinov M M 2005 Robust control design with MATLAB. Springer-Verlag London

  • Hu S, Zhang Y, Yin X and Du Z 2013 T–S fuzzy-model-based robust stabilization for a class of nonlinear discrete-time networked control systems. Nonlinear Anal.: Hybrid Syst. 8: 69–82

    MATH  MathSciNet  Google Scholar 

  • Hua C., Wang Q -G and Guan X 2009 Robust adaptive controller design for nonlinear time-delay systems via T-S fuzzy approach. IEEE Trans. Fuzzy Syst. 17(4): 901–910

    Article  Google Scholar 

  • Islam S and Liu X P 2011 Robust sliding mode control of robot manipulators. IEEE Trans. Ind. Electronics 58(6)

  • Kamal E, Aitouche A and Abbes D 2014 Robust fuzzy scheduler fault tolerant control of wind energy systems subject to sensor and actuator faults. Int. J. Electr. Power Energy Syst. 55: 402–419

    Article  Google Scholar 

  • Li T -H S et al 2008 Robust H\(_{\infty }\) fuzzy control for a class of uncertain discrete fuzzy bilinear systems. IEEE Trans. Syst. Man Cybern. - B: Cybern. 38(2): 510–527

    Article  Google Scholar 

  • Moberg S 2007 On modeling and control of flexible manipulators. Thesis, Dept. Electric. Eng., Linkoping Univ., Sweden

  • Moberg S and Hanssen S 2007 A approach to feed forward control of flexible manipulators. In: IEEE Int. Conf. Robotics Automation, Roma, Italy, April 2007, pp. 10–14

  • Moberg S and Öhr J 2005 Robust control of a flexible manipulator arm: A benchmark problem. In: 16th IFAC World Congr., Prague, Czech Republic, July 2005

  • Moberg S and Öhr J 2008 Swedish open championships in robot control. Open Championships, Sweden

  • Moberg S, Öhr J and Gunnarsson S 2008 A benchmark problem for robust control of a multivariable nonlinear flexible manipulator. In: 17th IFAC World Congr., Seoul, South Korea, July 2008

  • Moberg S, Ohr J and Gunnarsson S 2009 A benchmark problem for robust feedback control of a flexible manipulator. IEEE Trans. Control Syst. Technol. 17(6): 1398–1405

    Article  Google Scholar 

  • Ohr J et al 2006 Identification of flexibility parameters of 6-axis industrial manipulator models. In: Int. Conf. Noise Vibration Eng. (ISMA), Leuven, Belgium, Sept. 2006, pp. 3305–3314

  • Patra S, Sen S and Ray G 2008 Design of static H\(\infty \) loop shaping controller in four-block framework using LMI approach. Automatica 44(8): 2214–2220

    Article  MATH  MathSciNet  Google Scholar 

  • Shayeghi H, Jalili A and Shayanfar H A 2008 A robust mixed H2/Hinf based LFC of a deregulated power system including SMES. Energy Conversion Manag 49(10): 2656–2668

    Article  Google Scholar 

  • Wai R -J and Yang Z -W 2008 Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics. Systems, Man, Cybern. B: Cybern. IEEE Trans. 38(5): 1326–1346

    Article  Google Scholar 

  • Wai R -J, Huang Y -C, Yang Z -W and Shih C -Y 2010 Adaptive fuzzy-neural-network velocity sensorless control of robot manipulator position tracking. IET Control Theory Appl. 4(6): 1079–1093

    Article  Google Scholar 

  • Wernholt E and Gunnarsson S 2006 Detection and estimation of nonlinear distortions in industrial robots. In: IEEE Instrumentation and Measurement Technology Conf., Sorrento, Italy, April 2006

  • Wu X, Wang Y and Dang X 2014 Robust adaptive sliding-mode control of condenser-cleaning mobile manipulator using fuzzy wavelet neural network. Fuzzy Sets Syst. 235: 62–82

    Article  MathSciNet  Google Scholar 

  • Yang H, Li X, Liu Z and Zhao L 2014a Robust fuzzy-scheduling control for nonlinear systems subject to actuator saturation via delta operator approach. Inf. Sci. 272: 158–172

    Article  MathSciNet  Google Scholar 

  • Yang H, Shi P, Li X and Li Z 2014b Fault-tolerant control for a class of T–S fuzzy systems via delta operator approach Original Research Article. Signal Process 98: 166–173

    Article  Google Scholar 

  • Yue D and Lam J 2004 Suboptimal robust mixed H2/H\(_{\inf }\) controller design for uncertain descriptor systems with distributed delays. Comput. Math. Appl. 47(6–7): 1041–1055

    Article  MATH  MathSciNet  Google Scholar 

  • Zheng F, Wang Q -G and Lee T H 2004 Adaptive and robust controller design for uncertain nonlinear systems via fuzzy modeling approach. IEEE Trans. Syst. Man Cybern. B: Cybern. 34(1): 166–178

    Article  Google Scholar 

  • Zouand Y et al 2010 Neural network robust Hinf tracking control strategy of robot manipulators. Appl. Math. Model. 34(7): 1823–1838

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to VAHID AZIMI.

Appendix

Appendix

1.1 Quasi-linear affine system presentation

The detailed quasi-linear affine model of original manipulator dynamics in (1) is presented in appendix.

By substituting (3) into (1), one can obtain

$$\begin{array}{@{}rcl@{}}{J}_{{m}}\ddot{{q}}_{{m}}&{=}&{u}_{{m}}{+\mathit{w}-} {f}_{{m}}\dot{{q}}_{{m}} {-[7500}({q}_{{m}}{-}{q}_{{a}_{{1}}} )^{{3}}{+10}({q}_{{m}}{-}{q}_{{a}_{{1}}}) {]-}{d}_{{1}}(\dot{q}_{{m}}{-}\dot{q}_{{a}_{{1}}})\\ {J}_{{a}_{{1}}}\ddot{q}_{{a}_{{1}}}&=&-{f}_{{a}_{{1}}}\dot{q}_{{a}_{{1}}}{+[7500}({q}_{{m}}{-}{q}_{{a}_{{1}}} )^{{3}}{+10}({q}_{{m}}{-}{q}_{{a}_{{1}}}){]+}{d}_{{1}}(\dot{q}_{{m}}{-}\dot{q}_{{a}_{{1}}} )\\ &&{- }{k}_{{2}}({q}_{{a}_{{1}}}{-}{q}_{{a}_{{2}}} ){-}{d}_{{2}}(\dot{q}_{{a}_{{1}}}{-}\dot{q}_{{a}_{{2}}})\\ {J}_{{a}_{{2}}}\ddot{q}_{{a}_{{2}}}&=&-{f}_{{a}_{{2}}}\dot{q}_{{a}_{{2}}}{+}{k}_{{2}}({q}_{{a}_{{1}}}{-}{q}_{{a}_{{2}}} ){+}{d}_{{2}}(\dot{q}_{{a}_{{1}}}{-}\dot{q}_{{a}_{{2}}} ){-}{k}_{{3}}({q}_{{a}_{{2}}}{-}{q}_{{a}_{{3}}} ){-}{d}_{{3}}(\dot{q}_{{a}_{{2}}}{-}\dot{q}_{{a}_{{3}}} )\\ {J}_{{a}_{{3}}}\ddot{q}_{{a}_{{3}}}&=&v-{f}_{{a}_{{3}}}\dot{q}_{{a}_{{3}}}{+}{k}_{{3}}({q}_{{a}_{{2}}}{-}{q}_{{a}_{{3}}} ){+}{d}_{{3}}(\dot{q}_{{a}_{{2}}}{-}\dot{q}_{{a}_{{3}}} ) \end{array} $$
(19)

By expanding above equations, it is concluded that

$$\begin{array}{@{}rcl@{}} {J}_{{m}}\ddot{q}_{{m}}&=&-\left({7500}{q}_{{m}}^{{3}}{+22500}{q}_{{m}}{q}_{{a}_{{1}}}^{{2}}{+10}{q}_{{m}} \right){+}\left({7500}{q}_{{a}_{{1}}}^{{3}}{+22500}{q}_{{a}_{{1}}}{q}_{{m}}^{{2}}{+10}{q}_{{a}_{{1}}} \right)\\ &&{-}\left({f}_{{m}}\dot{q}_{{m}}{+}{d}_{{1}}\dot{q}_{{m}} \right){+}{d}_{{1}}\dot{q}_{{a}_{{1}}}{+w+}{u}_{{m}}\\ {J}_{{a}_{{1}}}\ddot{q}_{{a}_{{1}}}&{=}&\left({7500}{q}_{{m}}^{{3}}{+22500}{q}_{{m}}{q}_{{a}_{{1}}}^{{2}}{+10}{q}_{{m}} \right){-}\left({7500}{q}_{{a}_{{1}}}^{{3}}{+22500}{q}_{{a}_{{1}}}{q}_{{m}}^{{2}}{+10}{q}_{{a}_{{1}}}{+}{k}_{{2}}{q}_{{a}_{{1}}} \right)\\ &&{+}{k}_{{2}}{q}_{{a}_{{2}}}{+}{d}_{{1}}\dot{q}_{{m}}{-}({f}_{{a}_{{1}}}\dot{q}_{{a}_{{1}}}{+}{d}_{{1}}\dot{q}_{{a}_{{1}}}{+}{d}_{{2}}\dot{q}_{{a}_{{1}}} ){+}{d}_{{2}}\dot{q}_{{a}_{{2}}}\\ {J}_{{a}_{{2}}}\ddot{q}_{{a}_{{2}}}&=&-{f}_{{a}_{{2}}}\dot{q}_{{a}_{{2}}}{+}{k}_{{2}}({q}_{{a}_{{1}}}{-}{q}_{{a}_{{2}}} ){+}{d}_{{2}}(\dot{q}_{{a}_{{1}}}{-}\dot{q}_{{a}_{{2}}} ){-}{k}_{{3}}({q}_{{a}_{{2}}}{-}{q}_{{a}_{{3}}} ){-}{d}_{{3}}(\dot{q}_{{a}_{{2}}}{-}\dot{q}_{{a}_{{3}}} ) \\ {J}_{{a}_{{3}}}\ddot{q}_{{a}_{{3}}}&=&v-{f}_{{a}_{{3}}}\dot{q}_{{a}_{{3}}}{+}{k}_{{3}}({q}_{{a}_{{2}}}{-}{q}_{{a}_{{3}}} ){+}{d}_{{3}}(\dot{q}_{{a}_{{2}}}{-}\dot{q}_{{a}_{{3}}} ) \end{array} $$
(20)

By factorization of system states (5), it yields

$$\begin{array}{@{}rcl@{}}\ddot{q}_{{m}}&=&-\left[ \frac{{7500}\left({q}_{{m}}^{{2}}{+3}{q}_{{a}_{{1}}}^{{2}} \right){+10}}{{J}_{{m}}} \right]{q}_{{m}}{+}\left[ \frac{{7500}\left({q}_{{a}_{{1}}}^{{2}}{+3}{q}_{{m}}^{{2}} \right){+10}}{{J}_{{m}}} \right]{q}_{{a}_{{1}}}\\ &&{-}\left[ \frac{{f}_{{m}}{+}{d}_{{1}}}{{J}_{{m}}} \right]\dot{q}_{{m}}{+}{d}_{{1}}\dot{q}_{{a}_{{1}}}{+\mathit{w}+}{u}_{{m}} \end{array} $$
$$\begin{array}{@{}rcl@{}} \ddot{q}_{{a}_{{1}}}&=&\left[ \frac{{7500}\left({q}_{{m}}^{{2}}{+3}{q}_{{a}_{{1}}}^{{2}} \right){+10}}{{J}_{{a}_{{1}}}} \right]{q}_{{m}}{-}\left[ \frac{{7500}\left({q}_{{a}_{{1}}}^{{2}}{+3}{q}_{{m}}^{{2}} \right){+10+}{k}_{{2}}}{{J}_{{a}_{{1}}}} \right]{q}_{{a}_{{1}}}\\ &&{+}\frac{{k}_{{2}}}{{J}_{{a}_{{1}}}}{q}_{{a}_{{2}}}{++}\frac{{d}_{{1}}}{{J}_{{a}_{{1}}}}\dot{q}_{{m}}{-}\left[ \frac{{f}_{{a}_{{1}}}{+}{d}_{{1}}{+}{d}_{{2}}}{{J}_{{a}_{{1}}}} \right]\dot{q}_{{a}_{{1}}}{+}\frac{{d}_{{2}}}{{J}_{{a}_{{1}}}}\dot{q}_{{a}_{{2}}}\\ \ddot{q}_{{a}_{{2}}}&{=}&\frac{{k}_{{2}}}{{J}_{{a}_{{2}}}}{q}_{{a}_{{1}}}{-}\frac{\left({k}_{{2}}{+}{k}_{{3}} \right)}{{J}_{{a}_{{2}}}}{q}_{{a}_{{2}}}{+}\frac{{k}_{{3}}}{{J}_{{a}_{{2}}}}{q}_{{a}_{{3}}}{+}\frac{{d}_{{2}}}{{J}_{{a}_{{2}}}}\dot{q}_{{a}_{{1}}}{-}\frac{({d}_{{2}}{+}{d}_{{3}}{+}{f}_{{a}_{{2}}} )}{{J}_{{a}_{{2}}}}\dot{q}_{{a}_{{2}}}{+}\frac{{d}_{{3}}}{{J}_{{a}_{{2}}}}\dot{q}_{{a}_{{3}}} \\ \ddot{q}_{{a}_{{3}}}&{=}&\frac{{k}_{{3}}}{{J}_{{a}_{{3}}}}{q}_{{a}_{{2}}}{-}\frac{{k}_{{3}}}{{J}_{{a}_{{3}}}}{q}_{{a}_{{3}}}{+}{d}_{{3}}\dot{q}_{{a}_{{2}}}{-}\frac{({d}_{{3}}{+}{f}_{{a}_{{3}}})}{{J}_{{a}_{{3}}}}\dot{q}_{{a}_{{3}}}{+\mathit{v}} \end{array} $$
(21)

States of system \(\underline {x}\) and nonlinearity terms R 1 R 2 can be expressed as follows:

$$\begin{array}{@{}rcl@{}} \underline{{x}}&{=}&[ {\begin{array}{*{20}c} {q}_{{m}} & {q}_{{a}_{{1}}} & {q}_{{a}_{{2}}} & {q}_{{a}_{{3}}} & \dot{q}_{{m}} & \dot{q}_{{a}_{{1}}} & \dot{q}_{{a}_{{2}}} & \dot{q}_{{a}_{{3}}} \end{array} } ]^{{T}}\\ {R}_{{1}}&{=}&{q}_{{m}}^{{2}}{+3}{q}_{{a}_{{1}}}^{{2}}{=}{x}_{{1}}^{{2}}{+3}{x}_{{2}}^{{2}}\\ {R}_{{2}}&{=}&3{q}_{{m}}^{{2}}{+}{q}_{{a}_{{1}}}^{{2}}{=}{{3}{x}_{{1}}}^{{2}}{+}{x}_{{2}}^{{2}} \end{array} $$
(22)

According to (20) and (21) the state-space quasi-linear model can be concluded

$$\begin{array}{@{}rcl@{}} \dot{x}_{{1}}&{=}&{x}_{{5}}\\ \dot{x}_{{2}}&{=}&{x}_{{6}}\\ \dot{x}_{{3}}&{=}&{x}_{{7}}\\ \dot{x}_{{4}}&{=}&{x}_{{8}}\\\dot{x}_{{5}}&{=}&-\left[ \frac{{7500}{R}_{{1}}{+10}}{{J}_{{m}}} \right]{x}_{{1}}{+}\left[ \frac{{7500}{R}_{{2}}{+10}}{{J}_{{m}}} \right]{x}_{{2}}{-}\left[ \frac{{f}_{{m}}{+}{d}_{{1}}}{{J}_{{m}}} \right]{x}_{{5}}{+}{d}_{{1}}{x}_{{6}}{+w+}{u}_{{m}}\\ \dot{x}_{{6}}&{=}&\left[ \frac{{7500}{R}_{{1}}{+10}}{{J}_{{a}_{{1}}}} \right]{x}_{{1}}{-}\left[ \frac{{7500}{R}_{{2}}{+10+}{k}_{{2}}}{{J}_{{a}_{{1}}}} \right]{x}_{{2}}{+}\frac{{k}_{{2}}}{{J}_{{a}_{{1}}}}{x}_{{3}}{++}\frac{{d}_{{1}}}{{J}_{{a}_{{1}}}}{x}_{{5}}\\ &&{-}\left[ \frac{{f}_{{a}_{{1}}}{+}{d}_{{1}}{+}{d}_{{2}}}{{J}_{{a}_{{1}}}} \right]{x}_{{6}}{+}\frac{{d}_{{2}}}{{J}_{{a}_{{1}}}}{x}_{{7}}\\ \dot{x}_{{7}}&{=}&\frac{{k}_{{2}}}{{J}_{{a}_{{2}}}}{x}_{{2}}{-}\frac{\left({k}_{{2}}{+}{k}_{{3}} \right)}{{J}_{{a}_{{2}}}}{x}_{{3}}{+}\frac{{k}_{{3}}}{{J}_{{a}_{{2}}}}{x}_{{4}}{+}\frac{{d}_{{2}}}{{J}_{{a}_{{2}}}}{x}_{{6}}{-}\frac{({d}_{{2}}{+}{d}_{{3}}{+}{f}_{{a}_{{2}}} )}{{J}_{{a}_{{2}}}}{x}_{{7}}{+}\frac{{d}_{{3}}}{{J}_{{a}_{{2}}}}{x}_{{8}}\\ \dot{x}_{{8}}&{=}&\frac{{k}_{{3}}}{{J}_{{a}_{{3}}}}{x}_{{3}}{-}\frac{{k}_{{3}}}{{J}_{{a}_{{3}}}}{x}_{{4}}{+}{d}_{{3}}{x}_{{7}}{-}\frac{({d}_{{3}}{+}{f}_{{a}_{{3}}})}{{J}_{{a}_{{3}}}}{x}_{{8}}{+\mathit{v}} \end{array} $$
(23)

Consequently, the matrices of system (22) can be represented as

$$\begin{array}{@{}rcl@{}} &&\underline{\dot{x}}=A\underline{{x}}{+}{B}_{\mathit{w}}{\mathit{w}+}{B}_{\mathit{v}}{\mathit{v}+}{B}_{{u}}{u} \\ &&A=\left[\!\!\!\!\! {\begin{array}{*{20}c} {0}_{{4\ast 4}} & {I}_{{4}}\\ {\begin{array}{*{20}c} {-}\frac{({7500}{R}_{{1}}{+10})}{{J}_{{m}}} & \frac{({7500}{R}_{{2}}{+10})}{{J}_{{m}}} & {0} & {0}\\ \frac{({7500}{R}_{{1}}{+10})}{{J}_{{a}_{{1}}}} & {-}\frac{({k}_{{2}}{+7500}{R}_{{2}}{+10})}{{J}_{{a}_{{1}}}} & \frac{{k}_{{2}}}{{J}_{{a}_{{1}}}} & {0}\\ {0} & \frac{{k}_{{2}}}{{J}_{{a}_{{2}}}} & {-}\frac{({k}_{{2}}{+}{k}_{{3}})}{{J}_{{a}_{{2}}}} & \frac{{k}_{{3}}}{{J}_{{a}_{{2}}}}\\ {0} & {0} & \frac{{k}_{{3}}}{{J}_{{a}_{{3}}}} & {-}\frac{{k}_{{3}}}{{J}_{{a}_{{3}}}} \end{array} } & {\begin{array}{*{20}c} {-}\frac{({f}_{{m}}{+}{d}_{{1}})}{{J}_{{m}}} & \frac{{d}_{{1}}}{{J}_{{m}}} & {0} & {0}\\ \frac{{d}_{{1}}}{{J}_{{a}_{{1}}}} & {-}\frac{({d}_{{1}}{+}{d}_{{2}}{+}{f}_{{a}_{{1}}})}{{J}_{{a}_{{1}}}} & \frac{{d}_{{2}}}{{J}_{{a}_{{1}}}} & {0}\\ {0} & \frac{{d}_{{2}}}{{J}_{{a}_{{2}}}} & {-}\frac{({d}_{{2}}{+}{d}_{{3}}{+}{f}_{{a}_{{2}}})}{{J}_{{a}_{{2}}}} & \frac{{d}_{{3}}}{{J}_{{a}_{{2}}}}\\ {0} & {0} & \frac{{d}_{{3}}}{{J}_{{a}_{{3}}}} & {-}\frac{({d}_{{3}}{+}{f}_{{a}_{{3}}})}{{J}_{{a}_{{3}}}} \end{array} } \end{array} } \!\!\!\!\!\!\right] \end{array} $$
$$\begin{array}{@{}rcl@{}} B&=&\left[ {\begin{array}{*{20}c} {B}_{\mathit{w}} & {B}_{\mathit{v}} & {B}_{{u}} \end{array} } \right]{=}\left[ {\begin{array}{*{20}c} {0} & {0} & {0}\\ {0} & {0} & {0}\\ {0} & {0} & {0}\\ {0} & {0} & {0}\\ \frac{{1}}{{J}_{{m}}} & \frac{{1}}{{J}_{{m}}} & {0} \\ {0} & {0} & {0}\\ {0} & {0} & {0}\\ {0} & {0} & \frac{{1}}{{J}_{{a}_{{1}}}} \end{array} } \right]\\ \end{array} $$
(24)

Referring above matrices, nonlinearity terms R 1 and R 2 and also uncertain parameters f m , \(f_{a_{1}}\), \(f_{a_{2}}\) and \(f_{a_{3}}\) appear only in matrix A. Define an affine parameter-dependent system is defined as:

$$\begin{array}{@{}rcl@{}} &~&\left\{ {\begin{array}{*{20}c} {E}\left({\rho } \right)\dot{x}{=A}\left({\rho } \right){x+}{B}_{{1}}\left({\rho } \right){\mathit{w}+}{B}_{{2}}\left({\rho } \right){u}\\ {z}_{{\infty }}{=}{C}_{{1}}\left({\rho } \right){x+}{d}_{{11}}\left({\rho } \right){\mathit{w}+}{d}_{{12}}\left({\rho } \right){u}\\ {z}_{{2}}{=}{C}_{{2}}\left({\rho } \right){x+}{d}_{{12}}\left({\rho } \right){\mathit{w}+}{d}_{{22}}\left({\rho } \right){u} \end{array} } \right.\\ {S}({\rho })&{=}&{S}_{{0}}{+}{\rho }_{{1}}{S}_{{1}}{+\mathellipsis +}{\rho }_{{n}}{S}_{{n}}\\ &~&\left[ {\begin{array}{*{20}c} {A}\left({\rho } \right){+jE}\left({\rho } \right) & {B}\left({\rho } \right)\\ {C}\left({\rho } \right) & {D}\left({\rho } \right) \end{array} } \right]{=}\left[ {\begin{array}{*{20}c} {A}_{{0}}{+j}{E}_{{0}} & {B}_{{0}}\\ {C}_{{0}} & {D}_{{0}} \end{array} } \right]{+}{\rho }_{{1}}\left[ {\begin{array}{*{20}c} {A}_{{\rho }_{{1}}}{+j}{E}_{{\rho }_{{1}}} & {B}_{{\rho }_{{1}}}\\ {C}_{{\rho }_{{1}}} & {D}_{{\rho }_{{1}}} \end{array} } \right]\\&&{+{\ldots} +}{\rho }_{{n}}\left[ {\begin{array}{*{20}c} {A}_{{\rho }_{{n}}}{+j}{E}_{{\rho }_{{n}}} & {B}_{{\rho }_{{n}}}\\ {C}_{{\rho }_{{n}}} & {D}_{{\rho }_{{n}}} \end{array} } \right]\\ {B}\left({\rho } \right)\!\!&{=}&\!\!\left[ {\begin{array}{*{20}c} {B}_{{1}}\left({\rho } \right)\! & \!{B}_{{2}}\left({\rho } \right) \end{array} } \right],C\left({\rho } \right)\!{=}\!\left[ {\begin{array}{*{20}c} {C}_{{1}}\left({\rho } \right) & {C}_{{2}}\left({\rho } \right) \end{array} } \right]^{{T}}\!, D\left({\rho } \right){\,=\,}\left[ \!{\begin{array}{*{20}c} {d}_{{11}}\left({\rho } \right) & \!{d}_{{12}}\left({\rho } \right)\\ {d}_{{12}}\left({\rho } \right) & \!{d}_{{22}}\left({\rho } \right) \end{array} }\! \right] \end{array} $$
(25)

where S 0,S 1,…,S n are given system matrices; A(.), B(.), C(.), D(.) and E(.) are fixed affine functions of some vector ρ=(ρ 1,…,ρ n ) The parameters p i are uncertain parameters. In this paper, uncertain parameters are given by following vector:

$$ {\rho =}\left({\rho }_{{1}}{,}{\rho }_{{2}}{,}{\rho }_{{3}}{,}{\rho }_{{4}} \right){=}({f}_{{m}}{f}_{{a}_{{1}}}{f}_{{a}_{{2}}}{f}_{{a}_{{3}}}) $$
(26)

As a result, according to definition of (24) and uncertain parameters of (25), the matrix A can be decomposed as

$$\begin{array}{@{}rcl@{}} &&{A}\left({\rho } \right){=}{A}_{{0}}{+}{\rho }_{{1}}{A}_{{1}}{+}{\rho }_{{2}}{A}_{{2}}{+}{\rho }_{{3}}{A}_{{3}}{+}{\rho }_{{4}}{A}_{{4}}{=}{A}_{{0}}{+}{f}_{{m}}{A}_{{f}_{{m}}}{+}{f}_{{a}_{{1}}}{A}_{{a}_{{1}}}{+}{f}_{{a}_{{2}}}{A}_{{a}_{{2}}}{+}{f}_{{a}_{{3}}}{A}_{{a}_{{3}}}\\ &&A=\left[\!\! {\begin{array}{*{20}c} {0}_{{4\ast 4}} & {I}_{{4}}\\ {\begin{array}{*{20}c} {-}\frac{({7500}{R}_{{1}}{+10})}{{J}_{{m}}} & \frac{({7500}{R}_{{2}}{+10})}{{J}_{{m}}} & {0} & {0}\\ \frac{({7500}{R}_{{1}}{+10})}{{J}_{{a}_{{1}}}} & {-}\frac{({k}_{{2}}{+7500}{R}_{{2}}{+10})}{{J}_{{a}_{{1}}}} & \frac{{k}_{{2}}}{{J}_{{a}_{{1}}}} & {0}\\ {0} & \frac{{k}_{{2}}}{{J}_{{a}_{{2}}}} & {-}\frac{({k}_{{2}}{+}{k}_{{3}})}{{J}_{{a}_{{2}}}} & \frac{{k}_{{3}}}{{J}_{{a}_{{2}}}}\\ {0} & {0} & \frac{{k}_{{3}}}{{J}_{{a}_{{3}}}} & {-}\frac{{k}_{{3}}}{{J}_{{a}_{{3}}}} \end{array} } & {\begin{array}{*{20}c} {-}\frac{{d}_{{1}}}{{J}_{{m}}} & \frac{{d}_{{1}}}{{J}_{{m}}} & {0} & {0}\\ \frac{{d}_{{1}}}{{J}_{{a}_{{1}}}} & {-}\frac{({d}_{{1}}{+}{d}_{{2}})}{{J}_{{a}_{{1}}}} & \frac{{d}_{{2}}}{{J}_{{a}_{{1}}}} & {0}\\ {0} & \frac{{d}_{{2}}}{{J}_{{a}_{{2}}}} & {-}\frac{({d}_{{2}}{+}{d}_{{3}})}{{J}_{{a}_{{2}}}} & \frac{{d}_{{3}}}{{J}_{{a}_{{2}}}}\\ {0} & {0} & \frac{{d}_{{3}}}{{J}_{{a}_{{3}}}} & {-}\frac{{d}_{{3}}}{{J}_{{a}_{{3}}}} \end{array} } \end{array} }\!\! \right]\\ &&{A}_{{f}_{{m}}}{=}\left[ {\begin{array}{*{20}c} {0}_{{4\ast 8}}\\ {\begin{array}{*{20}c} {0} & {0} & {0} & {0} & {-}\frac{{1}}{{J}_{{m}}} & {0} & {0} & {0} \end{array} }\\ {0}_{{3\ast 8}} \end{array} } \right],\qquad{A}_{{a}_{{1}}}{=}\left[ {\begin{array}{*{20}c} {0}_{{5\ast 8}}\\ {\begin{array}{*{20}c} {0} & {0} & {0} & {0} & {0} & {-}\frac{{1}}{{J}_{{a}_{{1}}}} & {0} & {0} \end{array} }\\ {0}_{{2\ast 8}} \end{array} } \right]\\ &&{A}_{{a}_{{2}}}{=}\left[ {\begin{array}{*{20}c} {0}_{{6\ast 8}}\\ {\begin{array}{*{20}c} {0} & {0} & {0} & {0} & {0} & {0} & {-}\frac{{1}}{{J}_{{a}_{{2}}}} & {0} \end{array} }\\ {0}_{{1\ast 8}} \end{array} } \right]{,}\qquad{A}_{{a}_{{3}}}{=}\left[ {\begin{array}{*{20}c} {0}_{{7\ast 8}}\\ {\begin{array}{*{20}c} {0} & {0} & {0} & {0} & {0} & {0} & {0} & {-}\frac{{1}}{{J}_{{a}_{{3}}}} \end{array} } \end{array} } \right] \end{array} $$
(27)

This completes the subsection 2.2 (Proposed T-S fuzzy model) of section 2 (Model Description of ABB manipulator IRB6600).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AZIMI, V., MENHAJ, M.B. & FAKHARIAN, A. Tool position tracking control of a nonlinear uncertain flexible robot manipulator by using robust H2/H controller via T–S fuzzy model. Sadhana 40, 307–333 (2015). https://doi.org/10.1007/s12046-015-0354-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-015-0354-x

Keywords

Navigation