Skip to main content
Log in

Scaling of Cell Growth and Macromolecules

Quantitative Understanding of Cellular Size- and Time-Scales

  • General Article
  • Published:
Resonance Aims and scope Submit manuscript

Abstract

Biological systems span a wide spectrum of scales; size scales ranging from atomic to planetary and time scales from femtoseconds to billions of years. Scaling analysis has been a powerful tool to relate size scales and time scales and has revealed allometric relations between dynamics and sizes across diverse biological organisms, providing a potentially unifying framework. J. T. Bonner has demonstrated a natural scaling of size-scales with time-scales across organisms and showed that they are directly related in his now classic work Why Size Matters.

In this article, we focus on cells, the fundamental unit of life that can be unambiguously identified as being ‘alive’. We highlight the size scales of cells from submicron prokaryotes to single cells visible to the naked eye and compare these scales to those of the molecular building blocks of biology, namely, the macromolecules of DNA, RNA, lipids, and proteins. We then examine the scaling of these sizes with the reported times of cell growth, along with molecular replication and turnover. We find that the scaling over such a wide range of molecular and cellular processes matches the classical scaling seen by Bonner across organisms. In conclusion, this scaling relationship points to the need for a more detailed biophysical understanding of how molecular networks govern cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Suggested Reading

  1. J. B. S. Haldane, On being the right size, Harper’s Magazine, 1926.

  2. T. McMahon, Size and shape in biology, Science, Vol.179, No.4079, pp.1201–1204, 1973.

    Article  Google Scholar 

  3. M. Kleiber, Body size and metabolic rate, Physiol. Rev., Vol.27, No.4, pp.511–541, 1947.

    Article  Google Scholar 

  4. B. Alberts, A. D. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, Garland Science, Taylor and Francis Group, 2014.

  5. S Razin, D Yogev, and Y Naot, Molecular biology and pathogenicity of mycoplasmas, Microbiol. Mol. Biol. Rev., Vol.62, No.4, pp.1094–1156, 1998.

    Article  Google Scholar 

  6. J. B. Reece, Campbell Biology, Benjamin Cummings/Pearson, 2011.

  7. D. Boal, Mechanics of the Cell, Cambridge University Press, 2012.

  8. Varsha Singh, The origin of eukaryotic cells, Resonance, Vol.26, No.4, pp.479–489, 2021.

    Article  Google Scholar 

  9. ErwinSchrödinger, What is life: The physical aspect of the living cell with Mind and matter & Autobiographical sketches. Mind and Matter, 1992.

  10. Pablo A. Marquet, Renato A. Quinõnes, Sebastian Abades, Fabio Labra, Marcelo Tognelli, Matias Arim, and Marcelo Rivadeneira, Scaling and power-laws in ecological systems, J. Exp. Biol., Vol.208, Pt.9, pp.1749–1769, 2005.

    Article  Google Scholar 

  11. A. Shingleton, Allometry: The study of biological scaling, Nature Education Knowledge, Vol.3, No.10, pp.2, 2010.

    Google Scholar 

  12. Aaron Clauset, Cosma Rohilla Shalizi, and Mark E. J. Newman, Power-law distributions in empirical data, SIAM Rev., Vol.51, No.4, pp.661–703, 2009.

    Article  Google Scholar 

  13. Kurt J. Amann and Thomas D. Pollard. Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy, Proc. Nat. Acad. Sci. USA, Vol.98, No.26, pp.15009–15013, 2001.

    Article  Google Scholar 

  14. Juan-Manuel Anaya, Yehuda Shoenfeld, Adriana Rojas-Villarraga, Roger Levy, and Ricard Cervera, editors, Autoimmunity: From Bench to Bedside, El Rosario University Press, Bogota, Colombia, 2013.

    Google Scholar 

  15. Tanneke Den Blaauwen, Nienke Buddelmeijer, Mirjam E. G. Aarsman, Cor M. Hameete, and Nanne Nanninga, Timing of FtsZ assembly in Escherichia coli, J. Bact., Vol.181, No.17, pp.5157–5175, 1999.

    Google Scholar 

  16. A. B. Borle, Kinetic analyses of calcium movements in HeLa cell cultures. I. Calcium influx, The Journal of General Physiology, Vol.53, No.1, pp.43–56, 1969.

    Article  Google Scholar 

  17. K. Boström, M. Wettesten, J. Borén, G. Bondjers, O. Wiklund, and S. O. Olofsson, Pulse-chase studies of the synthesis and intracellular transport of apolipoprotein B-100 in Hep G2 cells, 7. Biol. Chem., Vol.261, No.29, pp.13800–13806, 1986.

    Article  Google Scholar 

  18. Michal Cagalinec, Dzhamilja Safiulina, Mailis Liiv, Joanna Liiv, Vinay Choubey, Przemyslaw Wareski, Vladimir Veksler, and Allen Kaasik, Principles of the mitochondrial fusion and fission cycle in neurons, J. Cell Sci., Vol.126, No.10, pp.2187–2197, 2013.

    Google Scholar 

  19. Manuel Campos, Ivan V. Surovtsev, Setsu Kato, Ahmad Paintdakhi, Bruno Beltran, Sarah E. Ebmeier, and Christine Jacobs-Wagner, A constant size extension drives bacterial cell size homeostasis, Cell, Vol.159, No.6, pp.1433–1446, 2014.

    Article  Google Scholar 

  20. Yaodong Chen and Harold P. Erickson, Rapid in vitro assembly dynamics and subunit turnover of FtsZ demonstrated by fluorescence resonance energy transfer, Journal of Biological Chemistry, Vol.280, No.23, pp.22549–22554, 2005.

    Article  Google Scholar 

  21. Geoffrey M Cooper and Robert E Hausman, The Cell: A Molecular Approach, 2nd Edition., Sinauer Associates, Sunderland, MA, USA, 2007.

    Google Scholar 

  22. Walton L. Fangman and Bonita J. Brewer, A question of time: Replication origins of eukaryotic chromosomes, Cell, Vol.71, No.3, pp.363–366, 1992.

    Article  Google Scholar 

  23. Beth Gibson, Daniel J. Wilson, Edward Feil, and Adam Eyre-Walker, The distribution of bacterial doubling times in the wild, Vol.285, No.1880, pp.20180789, 2018.

    Google Scholar 

  24. Beth Gibson, Daniel J. Wilson, Edward Feil, and Adam Eyre-Walker, Proc. Roy. Soc. B: Biological Sciences, Vol.285, No.1880, pp.20180789, 2018.

    Article  Google Scholar 

  25. Scott F. Gilbert, Developmental Biology, 6th edition. Sinauer Associates, Sunderland, MA, USA, 1988.

    Google Scholar 

  26. Christopher K. Haluska, Karin A. Riske, Valerie Marchi-Artzner, Jean Marie Lehn, Reinhard Lipowsky, and Rumiana Dimova, Time scale of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution, Proc. Nat. Acad. Sci. USA, Vol.103, No.43, pp.15841–15846, 2006.

    Article  Google Scholar 

  27. Tokuko Haraguchi and Yasushi Hiraoka, Breakdown and reformation of the nuclear envelope, In K. Nagata and K. Takeyasu, editors, Nuclear Dynamics: Molecular Biology and Visualization of the Nucleus, Springer Japan, 2007.

    Google Scholar 

  28. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Associates, Sunderland, MA, USA, 2001.

    Google Scholar 

  29. Shuhei Ito, Conleth G. Murphy, Ekaterina Doubrovina, Maria Jasin, and Mary Ellen Moynahan, PARP inhibitors in clinical use induce genomic instability in normal human cells, PLoS ONE, Vol.11, No.7, pp.e0159341, 2016.

    Article  Google Scholar 

  30. Neha Khetan and Chaitanya A. Athale, A Motor-gradient and clustering model of the centripetal motility of MTOCs in meiosis I of mouse oocytes, PLoS Comput. Biol., Vol.12, No.10, pp.e1005102, 2016.

    Article  Google Scholar 

  31. Michael A. Kirby, Lori CliftForsberg, Paul D. Wilson, and Salvatore C. Rapisardi, Quantitative analysis of the optic nerve of the north American opossum (Didelphis Virginiana): An electron microscopic study, J. Comp. Neurol., Vol.211, No.3, pp.318–327, 1982.

    Article  Google Scholar 

  32. U. Kristen and J. Lockhausen, Estimation of Golgi membrane flow rates in ovary glands of Aptenia cordifolia using cytochalasin B, Eur. J. Cell Biol., Vol.29, No.2, pp.262–267, 1983.

    Google Scholar 

  33. M. T. Laub, H. H. McAdams, T. Feldblyum, C. M. Fraser, and L. Shapiro, Global analysis of the genetic network controlling a bacterial cell cycle, Science, Vol.290, No.5499, pp.2144–2148, 2000.

    Article  Google Scholar 

  34. Leslie A. Pray, Discovery of DNA Double helix: Watson and Crick, Nature Education, Vol.1, No.1, pp.100, 2008.

    Google Scholar 

  35. Tim Mitchison, Louise Evans, Eric Schulze, and Marc Kirschner, Sites of microtubule assembly and disassembly in the mitotic spindle, Cell, Vol.45, No.4, pp.515–527, 1986.

    Article  Google Scholar 

  36. Galina Reshes, Sharon Vanounou, Itzhak Fishov, and Mario Feingold, Cell shape dynamics in Escherichia coli, Biophys. J., Vol.94, No.1, pp.251–264, 2008.

    Article  Google Scholar 

  37. Barbara S. Schuwirth, Maria A. Borovinskaya, Cathy W. Hau, Wen Zhang, Anton Vila-Sanjurjo, James M. Holton, and Jamie H. Doudna Cate, Structures of the bacterial ribosome at 3.5øA resolution, Science, Vol.310, No.5749, pp.827–834, 2005.

    Article  Google Scholar 

  38. Antony W. Shermoen and Patrick H. O’Farrell, Progression of the cell cycle through mitosis leads to abortion of nascent transcripts, Cell, Vol.67, No.2, pp.303–310, 1991.

    Article  Google Scholar 

  39. Martin W. Steer, Plasma membrane turnover in plant cells, J. Expt. Botany, Vol.39, No.8, pp.987–996, 1988.

    Article  Google Scholar 

  40. H. A. Swadlow and S. G. Waxman, Axonal conduction delays, Scholarpedia, Vol.7, No.6, pp.1451, 2012.

    Article  Google Scholar 

  41. Wai Ying Yvonne Tang, Alison J. Beckett, Ian A. Prior, Judy M. Coulson, Sylvie Urbe, and Michael J. Clague, Plasticity of mammary cell boundaries governed by EGF and actin remodeling, Cell Reports, Vol.8, No.6, pp.1722–1730, 2014.

    Article  Google Scholar 

  42. C. L. Woldringh, M. A. De Jong, W. van den Berg, and L. Koppes, Morphological analysis of the division cycle of two Escherichia coli substrains during slow growth, J. Bact., Vol.131, No.1, pp.270–279, 1977.

    Article  Google Scholar 

Download references

Acknowledgement

Tanvi Kale is supported by a Doctoral Fellowship from IISER Pune. Shivam S. Chitnis is supported by an INSPIRE fellowship from DST. This article was part of a classroom assignment by Tanvi Kale and Shivam S. Chitnis in a cellular biophysics course taught by Chaitanya A. Athale. Fun classroom discussions with past students and the freedom to design the course offered by USER Pune are acknowledged by Chaitanya A. Athale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitanya A. Athale.

Additional information

Tanvi Kale obtained a Masters degree in Bioinformatics and Biotechnology from IBAB Bangalore in 2020. She is pursuing PhD at IISER Pune in synthetic biology.

Shivam Chitnis is a 4th year BS-MS student at IISER Pune. He is currently interested in understanding the neurobiology of birdsong.

Dr Chaitanya Athale is an Associate Professor in the Division of Biology at IISER Pune. He works in cellular biophysics and has been teaching a course by the same name since 2010.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, T., Chitnis, S.S. & Athale, C.A. Scaling of Cell Growth and Macromolecules. Reson 27, 325–337 (2022). https://doi.org/10.1007/s12045-022-1324-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12045-022-1324-3

Keywords

Navigation