Skip to main content
Log in

Sign-changing solutions for Kirchhoff weighted equations under double exponential nonlinearities growth

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the existence of least energy sign-changing solutions for a Kirchhoff weighted problem under Dirichlet boundary condition in the unit ball of \({\mathbb {R}}^{2}\). The non-linearity of the equation is assumed to have double exponential growth in view of Trudinger–Moser type inequalities. We use the constrained minimization in Nehari set, the quantitative deformation lemma and degree theory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abid I, Baraket S and Jaidane R, On a weighted elliptic equation of \(N\)-Kirchhoff type, accepted in 2022, to appear in Demonstratio Mathematica

  2. Adimurthi A and Sandeep K, A singular Moser–Trudinger embedding and its applications, Nonlinear Differ. Equ. Appl. 13(5–6) (2007) 585–603

  3. Alves C O and Corrêa F J S A, On existence of solutions for a class of problem involving a nonlinear operator, Comm. Appl. Nonlinear Anal. 8 (2001) 43–56

    MathSciNet  MATH  Google Scholar 

  4. Alves C O, Corrêa F J S A and Ma T F, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005) 85–93

    Article  MathSciNet  MATH  Google Scholar 

  5. Caglioti E, Lions P L, Marchioro C and Pulvirenti M, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Commun. Math. Phy. 143(3) (1992) 501–525

    Article  MathSciNet  MATH  Google Scholar 

  6. Caglioti E, Lions P L, Marchioro C and Pulvirenti M, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. II, Commun. Math. Phys. 174(2) (1995) 229–260

  7. Calanchi M and Ruf B, On a Trudinger–Moser type inequalities with logarithmic weights, J. Differ. Equ. 3 (2015) 258–263

    MathSciNet  MATH  Google Scholar 

  8. Calanchi M and Ruf B., Trudinger–Moser type inequalities with logarithmic weights in dimension \(N\), Nonlinear Anal., Series A 121 (2015) 403–411

    MATH  Google Scholar 

  9. Calanchi M and Ruf B, Weighted Trudinger–Moser inequalities and applications, Bull. SUSU (MMCS) 8(3) (2015) 42–55

    Article  MATH  Google Scholar 

  10. Calanchi M, Ruf B and Sani F, Elliptic equations in dimension \(2\) with double exponential nonlinearities, Nonlinear Differ. Equ. Appl. 24 (2017) Art. 29

  11. Calanchi M and Terraneo E, Non-radial maximizers for functionals with exponential non-linearity in \({\mathbb{R}}^{2}\), Adv. Nonlinear Studies 5 (2005) 337–350

    Article  MathSciNet  MATH  Google Scholar 

  12. Chanillo S and Kiessling M, Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Commun. Math. Phys. 160(2) (1994) 217–238

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen S T, Tang X H and Wei J Y, Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth, Z. Angew. Math. Phys. 72(1) (2021) Paper No. 38

  14. de Figueiredo D G and Severo U B, Ground state solution for a Kirchhoff problem with exponential critical growth, Milan J. Math. 84 (2016) 23–39

    Article  MathSciNet  MATH  Google Scholar 

  15. de Souza M, Severo U B and Luiz do Rego T, On solutions for a class of fractional Kirchhoff-type problems with Trudinger–Moser nonlinearity, Comm. Contemp. Math., 24(05) (2022) 2150002

    Article  Google Scholar 

  16. Dumitru Motreanu N P and Viorica Venera Motreanu, Topological and variational methods with applications to nonlinear boundary value problems (2014) (New York: Springer)

  17. Figueiredo G M and Nascimento R G, Existence of a nodal solution with minimal energy for a Kirchhoff equation, Math. Nachr. 288 (2015) 48–60

    Article  MathSciNet  MATH  Google Scholar 

  18. Figueiredo G M and Santos Jr J R, Existence of a least energy nodal solution for a Schröodinger–Kirchhoff equation with potential vanishing at infinity, J. Math. Phys. 56 (2015) 051506

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao L, Chen C F and Zhu C X, Existence of sign-changing solutions for Kirchhoff equations with critical or supercritical nonlinearity, Appl. Math. Lett. 107 (2020) Article 106424

  20. Han W and Yao J, The sign-changing solutions for a class of \(p\)-Laplacian Kirchhoff type problem in bounded domains, Comput. Math. Appl. 76 (2018) 1779–1790

    Article  MathSciNet  MATH  Google Scholar 

  21. Kavian O, Introduction à la Théorie des Points Critiques (1991) (Berlin: Springer-Verlag) 15, 17

  22. Kiessling M K-H, Statistical mechanics of classical particles with logarithmic interactions, Commun. Pure Appl. Math. 46 (1993) 27–56

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirchhof G, Mechanik (1883) (Leipzig: Teubner)

  24. Li Q, Du X and Zhao Z, Existence of sign-changing solutions for nonlocal Kirchhoff–Schrödinger-type equations in \(\mathbb{R}^3\), J. Math. Anal. Appl. 477 (2019) 174–186

    Article  MathSciNet  MATH  Google Scholar 

  25. Lions J, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud. 30 (1978) 284–346

    Article  MathSciNet  Google Scholar 

  26. Liouville J, Sur l’equation aux derivées partielles, J. Mathématiques Pures et Appliquées 18 (1853) 71–72

    Google Scholar 

  27. Miranda C, Un’osservazione su un teorema di Brouwer, Boll Un Mat Ital. 3 (1940) 5–7

    MathSciNet  MATH  Google Scholar 

  28. Rasouli S H, Fani H and Khademloo S, Existence of sign-changing solutions for a nonlocal problem of \(p\)-Kirchhoff type, Mediterranean J. Math. 14(5) (2017)

  29. Shen L, Sign-changing solutions to a \(N\)-Kirchhoff equation with critical exponential growth in \(\mathbb{R}^N\), Bull. Malays. Math. Sci. Soc. 44 (2021) 3553–3570

    Article  MathSciNet  MATH  Google Scholar 

  30. Shuai W, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differ. Equ. 259 (2015) 1256–1274

    Article  MathSciNet  MATH  Google Scholar 

  31. Tarantello G, Condensate solutions for the Chern–Simons–Higgs theory, J. Math. Phys. 37 (1996) 3769–3796

    Article  MathSciNet  MATH  Google Scholar 

  32. Tarantello G, Analytical Aspects of Liouville-Type Equations with Singular Sources, Handbook of Differential Equations edited by M Chipot and P Quittner (2004) (North Holland: Elsevier) pp. 491–592

  33. Wen L, Tang X H and Chen S, Ground state sign-changing solutions for Kirchhoff equations with logarithmic nonlinearity, Electron. J. Qual. Theor. 47 (2019) 1–13

    MATH  Google Scholar 

  34. Willem M, Minimax Theorems (1996) (Boston: Birkhäuser)

  35. Xiao T, Tang Y and Zhang Q, The existence of sign-changing solutions for Schrodinger–Kirchhoff problems in \(\mathbb{R}^3\), AIMS Math. 6(7) (2021) 6726–6733

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Chetouane.

Additional information

Communicating Editor: K Sandeep

Appendix

Appendix

1.1 Appendix A.

Theorem A1

There exists \(w \in {\mathcal {M}}_p\) such that \(J_p(w) = m_p\) where \( m_p = \inf _{{\mathcal {M}}_p} J_p(u)\).

Proof

The proof of this theorem is obtained by the following steps:

\(\textit{Step } 1.\):

For any \(u \in E\) with \(u^{\pm } \ne 0\), similar to Lemma 7, there is an unique maximum point pair \((s_u, t_u) \in {\mathbb {R}}_+\times {\mathbb {R}}_+\) of the function \(J_p\) such that \(s_u u^+ + t_u u^- \in {\mathcal {M}}_p.\)

\(\textit{Step } 2.\):

If \(u \in E\) with \(u^{\pm } \ne 0\), then \(\langle J_p'(u),u^\pm \rangle \le 0\). Then, similar to Lemma 8, the unique maximum point pair \((s_u, t_u)\) in Step 1 satisfies \(0<s_u, t_u\le 1\).

\(\textit{Step } 3.\):

Similar to Lemma 10, for all \(u \in {\mathcal {M}}_p\), there exists \(\kappa > 0\) such that \(\Vert u^+\Vert ,\) \(\Vert u^-\Vert \ge \kappa .\)

\(\textit{Step } 4.\):

Now, let sequence \((w_n) \subset {\mathcal {M}} \) satisfy \( \lim _{n \rightarrow +\infty } J(w_n) = m\). Similar to Lemma 13, we can show that, up to a subsequence, \(w_{n}^\pm \rightharpoonup w^\pm ~~\text{ in }~~E.\) From Step 3, we show that \(w^\pm \ne 0\). Using Steps 1, 2 and again similar to Lemma 13, \(w \in {\mathcal {M}}_p\) such that \(J_p(w) = m_p\), as desired.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetouane, R., Jaidane, R. Sign-changing solutions for Kirchhoff weighted equations under double exponential nonlinearities growth. Proc Math Sci 133, 39 (2023). https://doi.org/10.1007/s12044-023-00760-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-023-00760-4

Keywords

2010 Mathematics Subject Classification

Navigation