Skip to main content
Log in

Signed and Sign-Changing Solutions for a Kirchhoff-Type Problem Involving the Weighted N-Laplacian with Critical Double Exponential Growth

  • Original Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the existence of least energy sign-changing solutions for a nonlocal weighted Schrödinger–Kirchhoff problem, under boundary Dirichlet condition in the unit ball B of \(\mathbb {R}^{N}\), \(N>2\). The non-linearity of the equation is assumed to have double exponential growth in view of Trudinger–Moser type inequalities. The potential V is a continuous positive function and bounded away from zero in B. We use the constrained minimization in Nehari set, the quantitative deformation lemma and degree theory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abid, I., Baraket, S., Jaidane, R.: On a weighted elliptic equation of N-Kirchhoff type. Demonstr. Math. 55, 634–657 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adimurthi, Sandeep, K.: A singular Moser-Trudinger embedding and its applications. Nonlinear Differ. Equ. Appl. 13, 585–603 (2007)

  3. Alves, C.O., Corrêa, F.J.S.A.: On existence of solutions for a class of problem involving a nonlinear operator. Commun. Appl. Nonlinear Anal. 8, 43–56 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Alves, C.O., Corrêa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 140, 285–300 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosetti, A., Malchiodi, A., Secchi, S.: Multiplicity results for some nonlinear Schörodinger equations with potentials. Arch. Rational Mech. Anal. 159, 253–271 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baraket, S., Jaidane, R.: Non-autonomous weighted elliptic equations with double exponential growth. An. Şt. Univ. Ovidius Constanţa Ser. Mat. 29, 33–66 (2021)

  8. Caglioti, E., Lions, P.L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501–525 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caglioti, E., Lions, P.L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. II. Commun. Math. Phys. 174, 229–260 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calanchi, M., Ruf, B.: On a Trudinger-Moser type inequalities with logarithmic weights. J. Differ. Equ. 258, 1967–1989 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Calanchi, M., Ruf, B.: Trudinger-Moser type inequalities with logarithmic weights in dimension N. Nonlinear Anal. Theory Methods Appl. 121, 403–411 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Calanchi, M., Ruf, B.: Weighted Trudinger-Moser inequalities and applications. Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Softw. 8, 42–55 (2015)

    MATH  Google Scholar 

  13. Calanchi, M., Ruf, B., Sani, F.: Elliptic equations in dimension 2 with double exponential nonlinearities. Nonlinear Differ. Equ. Appl. 24, 29 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Calanchi, M., Terraneo, E.: Non-radial maximizers for functionals with exponential non-linearity in \(\mathbb{R} ^{2}\). Adv. Nonlinear Stud. 5, 337–350 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chanillo, S., Kiessling, M.: Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry. Commun. Math. Phys. 160, 217–238 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, S.T., Tang, X.H., Wei, J.Y.: Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth. Z. Angew. Math. Phys. 72, 38 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chetouane, R., Jaidane, R.: Sign-changing solutions for Kirchhoff weighted equations under double exponential nonlinearities growth. Proceedings-Mathematical Sciences (2023). Accepted

  18. Cingolani, S., Lazzo, M.: Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J. Differ. Equ. 160, 118–138 (2000)

    Article  MATH  Google Scholar 

  19. Deng, S., Hu, T., Tang, C.-L.: N-Laplacian problems with critical double exponential nonlinearities. Discrete Contin. Dyn. Syst. 41, 987–1003 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities. Walter de Gruyter, Berlin (1997)

    Book  MATH  Google Scholar 

  21. Motreanu, D., Motreanu, V.V., Papageorgiou, N.: Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. Springer, New York (2014)

    Book  MATH  Google Scholar 

  22. de Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in \(\mathbb{R} ^{2}\) with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 3, 139–153 (1995)

    Article  MATH  Google Scholar 

  23. Figueiredo, G.M., Nascimento, R.G.: Existence of a nodal solution with minimal energy for a Kirchhoff equation. Math. Nachr. 288, 48–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Figueiredo, G.M., Nunes, F.B.M.: Existence of positive solutions for a class of quasilinear elliptic problems with exponential growth via the Nehari manifold method. Rev. Mat. Complut. 32, 1–18 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. de Figueiredo, D.G., do Ó, J.M., Ruf, B.: On an inequality by N. Trudinger and J. Moser and related elliptic equations. Commun. Pure Appl. Math. 55, 135–152 (2002)

  26. Figueiredo, G.M., Santos Júnior, J.R.: Existence of a least energy nodal solution for a Schrödinger-Kirchhoff equation with potential vanishing at infinity. J. Math. Phys. 56, 051506 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Figueiredo, G.M., Severo, U.B.: Ground state solution for a Kirchhoff problem with exponential critical growth. Milan J. Math. 84, 23–39 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gao, L., Chen, C.F., Zhu, C.X.: Existence of sign-changing solutions for Kirchhoff equations with critical or supercritical nonlinearity. Appl. Math. Lett. 107, 106424 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Han, W., Yao, J.: The sign-changing solutions for a class of p-Laplacian Kirchhoff type problem in bounded domains. Comput. Math. Appl. 76, 1779–1790 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kharrati, S., Jaidane, R.: Existence of positive solutions to weighted linear elliptic equations under double exponential nonlinearity growth. Bull. Iran. Math. Soc. 48, 993–1021 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kavian, O.: Introduction à la Théorie des Points Critiques. Springer-Verlag, Berlin, Heidelberg (1991)

    MATH  Google Scholar 

  32. Kiessling, M.K.-H.: Statistical mechanics of classical particles with logarithmic interactions. Commun. Pure Appl. Math. 46, 27–56 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kirchhof, G.: Mechanik. Teubner, Leipzig (1883)

    Google Scholar 

  34. Kufner, A.: Weighted Sobolev Spaces. John Wiley and Sons Ltd. (1985)

  35. Li, Q., Du, X., Zhao, Z.: Existence of sign-changing solutions for nonlocal Kirchhoff-Schrödinger-type equations in \(\mathbb{R} ^3\). J. Math. Anal. Appl. 477, 174–186 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liang, S., Rădulescu, V.D.: Least-energy nodal solutions of critical Kirchhoff problems with logarithmic nonlinearity. Anal. Math. Phys. 10, 45 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lions, J.: On Some Questions in Boundary Value Problems of Mathematical Physics. In: De La Penha, G.M., Medeiros, L.A.J. (eds.) North-Holland Mathematics Studies, vol. 30, pp. 284–346. Elsevier (1978)

  38. Liouville, J.: Sur l’équation aux différences partielles \(\frac{d^2\log \lambda }{dudv}\pm \frac{\lambda }{2a^2}=0\). J. Math. Pures Appl. 18, 71–72 (1853)

    Google Scholar 

  39. Masmoudi, N., Sani, F.: Trudinger-Moser inequalities with the exact growth condition in \(\mathbb{R^{N}} \) and applications. Commun. Partial Differ. Equ. 40, 1408–1440 (2015)

    Article  MATH  Google Scholar 

  40. Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital. 3, 5–7 (1940)

    MathSciNet  MATH  Google Scholar 

  41. Shen, L.: Sign-changing solutions to a N-Kirchhoff equation with critical exponential growth in \(\mathbb{R} ^N\). Bull. Malays. Math. Sci. Soc. 44, 3553–3570 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shuai, W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differ. Equ. 259, 1256–1274 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. de Souza, M., Severo, U.B., Luiz do Rêgo, T.: On solutions for a class of fractional Kirchhoff-type problems with Trudinger-Moser nonlinearity. Commun. Contemp. Math 24, 2150002 (2022)

  44. Tarantello, G.: Multiple condensate solutions for the Chern-Simons-Higgs theory. J. Math. Phys. 37, 3769–3796 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tarantello, G.: Analytical aspects of Liouville-type equations with singular sources. In: Chipot, M., Quittner, P. (eds.) Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 1, pp. 491–592. North Holland, Amsterdam (2004)

    Chapter  MATH  Google Scholar 

  46. Wen, L., Tang, X.H., Chen, S.: Ground state sign-changing solutions for Kirchhoff equations with logarithmic nonlinearity. Electron. J. Qual. Theory Differ. Equ. 47, 1–13 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

  48. Xiao, T., Tang, Y., Zhang, Q.: The existence of sign-changing solutions for Schrödinger-Kirchhoff problems in \(\mathbb{R} ^3\). AIMS Mathematics 6, 6726–6733 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, Y., Yang, Y., Liang, S.: Least energy sign-changing solution for N-Laplacian problem with logarithmic and exponential nonlinearities. J. Math. Anal. Appl. 505, 125432 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Baraket.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A   Appendix

A   Appendix

Theorem A.1

There exists \(w \in \mathcal {M}_p\) such that \(J_p(w) = m_p\) where \(m_p = \inf _{\mathcal {M}_p} J_p(u)\).

Proof

The proof of this theorem is obtained by the following steps:

  1. (Step 1)

    For any \(u \in E\) with \(u^{\pm } \ne 0\), similar to Lemma 1, there is the unique maximum point pair \((s_u, t_u) \in \mathbb {R}_+\times \mathbb {R}_+\) of the function \(J_p\) such that \(s_u u^+ + t_u u^- \in \mathcal {M}_p\).

  2. (Step 2)

    If \(u \in E\) with \(u^{\pm } \ne 0\), such that \(\langle J_p'(u),u^\pm \rangle \le 0\). Then, similar to Lemma 2, the unique maximum point pair \((s_u, t_u)\) in Step 1 satisfies \(0<s_u, t_u\le 1\).

  3. (Step 3)

    Similar to Lemma 4, for all \(u \in \mathcal {M}_p\), there exists \(\kappa > 0\) such that \(\Vert u^+\Vert \), \(\Vert u^-\Vert \ge \kappa \).

  4. (Step 4)

    Now, let sequence \((w_n) \subset \mathcal {M}\) satisfies \(\lim _{n \rightarrow +\infty } J(w_n) = m\). Similar to Lemma 7, we can to show that, up to a subsequence, \(w_{n}^\pm \rightharpoonup w^\pm \) in E. From Step 3, we show that \(w^\pm \ne 0\). Using the Steps 1, 2 and again similar to Lemma 7, \(w \in \mathcal {M}_p\) such that \(J_p(w) = m_p\), as desired.\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraket, S., Chetouane, R. & Jaidane, R. Signed and Sign-Changing Solutions for a Kirchhoff-Type Problem Involving the Weighted N-Laplacian with Critical Double Exponential Growth. Vietnam J. Math. (2023). https://doi.org/10.1007/s10013-023-00667-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10013-023-00667-7

Keywords

Mathematics Subject Classification (2010)

Navigation