Skip to main content
Log in

Concentration behavior of solutions for quasilinear elliptic equations with steep potential well

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we study the following quasilinear elliptic equation:

$$\begin{aligned} -\triangle u+\lambda V(x)u-[\triangle (1+u^{2})^{\frac{1}{2}}]\frac{u}{2(1+u^{2})^{\frac{1}{2}}}=|u|^{p-2}u,\,\,x\in {{\mathbb {R}}}^{N}, \end{aligned}$$

where \(N\ge 3\), \(\lambda >0\), \(12-4\sqrt{6}<p<2^{*}\), \(V\in C({{\mathbb {R}}}^{N},{{\mathbb {R}}})\) and \(V^{-1}(0)\) has nonempty interior. At first, we prove the existence of a nontrivial solution \(u_{\lambda }\) via variational method. Then, the concentration behavior of \(u_{\lambda }\) is also explored on the set \(V^{-1}(0)\) as \(\lambda \rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bezerra do Ó J M, Miyagaki O H and Soares S H M, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differ. Equ. 248 (2010) 722–744

  2. Brandi H, Manus C, Mainfray G, Lehner T and Bonnaud G, Relativistic and ponderomotive self-focusing of a laser beam in a radially in homogeneous plasma, Phys. Fluids. B. 5 (1993) 3539–3550

    Article  Google Scholar 

  3. Bass F G and Nasanov N N, Nonlinear electromagnetic-spin waves, Phys. Rep. 189 (1990) 165–223

    Article  Google Scholar 

  4. Brüll L and Lange H, Solitary waves for quasilinear Schrödinger equations, Expo. Math. 4 (1986) 279–288

    MATH  Google Scholar 

  5. Bartsch T, Pankov A and Wang Z Q, Nonlinear Schrödinger equations with steep potential well, 3 (2001) 549–569

    Google Scholar 

  6. Bartsch T and Tang Z, Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential, Discrete. Contin. Dyn. Syst. 33 (2013) 7–26

    Article  MathSciNet  Google Scholar 

  7. Bartsch T and Wang Z Q, Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R}}^{N}\), Commun. Partial Differ. Equ. 193 (2003) 481–499

    Google Scholar 

  8. Chen X L and Sudan R N, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett. 70 (1993) 2082–2085

    Article  Google Scholar 

  9. Colin M and Jeanjean L, Solutions for a quasilinear Schrödinger equation: A dual approach, Noninear Anal. TMA 56 (2004) 213–226

    Article  Google Scholar 

  10. Chen S and Wu X, Existence of positive solutions for a class of quasilinear Schrödinger equations of Choquard type, J. Math. Anal. Appl. 475 (2019) 1754–1777

    Article  MathSciNet  Google Scholar 

  11. De Bouard A, Hayashi N and Saut J, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys. 189 (1997) 73–105

    Article  Google Scholar 

  12. Deng Y, Peng S and Yan S, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differ. Equ. 258 (2015) 115–147

    Article  Google Scholar 

  13. Deng Y, Peng S and Yan S, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differ. Equ. 260 (2019) 1228–1262

    Article  Google Scholar 

  14. Deng Y and Huang W, Positive ground state solutions for a quasilinear elliptic equation with critical exponent, Discrete. Contin. Dyn. Syst. A. 37 (2017) 4213–4230

    Article  MathSciNet  Google Scholar 

  15. Ekeland I, Convexity Methods in Hamiltonian Mechanics (1990) (Berlin: Springer)

  16. Fang X and Szulkin A, Multiple solutions for a quasilinear Schrödinger equation, J. Differ. Equ. 254 (2013) 2015–2032

    Article  Google Scholar 

  17. Furtado M F, Silva E D and Silva M L, Existence of solution for a generalized quasilinear elliptic problem, J. Math. Phys. 58 (2017) 031503

    Article  MathSciNet  Google Scholar 

  18. Hasse R W, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B 37 (1980) 83–87

    Article  MathSciNet  Google Scholar 

  19. Jia H, Concentrating ground state solutions for quasilinear Schrödinger equations with steep potential well, Appl. Anal., https://doi.org/10.1080/00036811.2019.1707814

  20. Jia H and Luo X, Existence and concentrating behavior of solutions for Kirchoff type equations with steep potential well, J. Math. Anal. Appl. 467 (2018) 893–915

    Article  MathSciNet  Google Scholar 

  21. Kurihara S, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan 50 (1981) 3262–3267

    Article  Google Scholar 

  22. Kosevich A M, Ivanov B A and Kovalev A S, Magnetic solitons, Phys. Rep. 194 (1990) 117–238

    Article  Google Scholar 

  23. Lange H, Poppenberg M and Teismann H, Nash-Moser methods for the solution of quasilinear Schrödinger equations, Commun. Partial Differ. Equ. 24 (1999) 1399–1418

    Article  Google Scholar 

  24. Laedke E, Spatschek K and Stenflo L, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys. 24 (1983) 2764–2769

    Article  MathSciNet  Google Scholar 

  25. Liu J, Wang Y and Wang Z, Soliton solutions for quasilinear Schrödinger equations I, Proc. Amer. Math. Soc. 131 (2003) 473–493

    MATH  Google Scholar 

  26. Liu J, Wang Y and Wang Z, Soliton solutions for quasilinear Schrödinger equations II, J. Differ. Equ. 187 (2003) 441–448

    Article  Google Scholar 

  27. Liu J, Wang Y and Wang Z, Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Partial Differ. Equ. 29 (2004) 879–901

    Article  Google Scholar 

  28. Landan L D and Lifschitz E M, Quantum Mechanics, Non-Relativistic Theory (1968) (Reading, MA: Addison Wesley)

  29. Liu X, Liu J and Wang Z, Quasilinear elliptic equations with critical growth via perturbation method, J. Differ. Equ. 254 (2013) 102–124

    Article  MathSciNet  Google Scholar 

  30. Liu X, Liu J and Wang Z, Ground states for quasilinear Schrödinger equations with critical growth, Calc. Var. Partial Differ. Equ. 46 (2013) 641–669

    Article  Google Scholar 

  31. Moameni A, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in \({\mathbb{R}}^{N}\), J. Differ. Equ. 229 (2006) 570–587

    Article  Google Scholar 

  32. Makhankov V G and Fedyanin V K, Nonlinear effects in quasi-one-dimensional models and condensed matter theory, Phys. Rep. 104 (1984) 1–86

    Article  MathSciNet  Google Scholar 

  33. Poppenberg M, Schmitt K and Wang Z, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differ. Equ. 14 (2002) 329–344

    Article  Google Scholar 

  34. Ritchie B, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E. 50 (1994) 687–689

    Article  Google Scholar 

  35. Shen Y and Wang Y, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA 80 (2013) 194–201

    Article  Google Scholar 

  36. Shen Y and Wang Y, A class of generalized quasilinear Schrödinger equations, Commum. Pure Appl. Anal. 15 (2016) 853–870

    Article  MathSciNet  Google Scholar 

  37. Silva E A B and Vieira G F, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differ. Equ. 39 (2010) 1–33

    Article  Google Scholar 

  38. Severo U B, Gloss E and da Silva E D, On a class of quasilinear Schrödinger equations with superlinear or asymptotically linear terms, J. Differ. Equ. 263 (2017) 3550–3580

    Article  Google Scholar 

  39. Willem M, Minimax Theorems (1996) (Boston: Birkhäuser)

  40. Yang X Y, Tang X H and Gu G Z, Concentration behavior of ground states for a generalized quasilinear Choquard equation, Math. Meth. Appl. Sci. (2020) 1–17

  41. Yang J, Wang Y and Abdelgddir A A, Soliton solutions for quasilinear Schrödinger equations, J. Math. Phys. 54 (2013) 071502.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11661053, 11771198, 11961045 and 11901276), the Provincial Natural Science Foundation of Jiangxi (Grant Nos. 20181BAB201003, 20202BAB201001 and 20202BAB211004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingying Ling.

Additional information

Communicated by A K Nandakumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Huang, X. & Ling, P. Concentration behavior of solutions for quasilinear elliptic equations with steep potential well. Proc Math Sci 132, 5 (2022). https://doi.org/10.1007/s12044-021-00650-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-021-00650-7

Keywords

2010 Mathematics Subject Classification

Navigation