Skip to main content
Log in

Ground states for quasilinear Schrödinger equations with critical growth

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

For a class of quasilinear Schrödinger equations with critical exponent we establish the existence of both one-sign and nodal ground states of soliton type solutions by the Nehari method. The method is to analyze the behavior of solutions for subcritical problems from our earlier work (Liu et al. Commun Partial Differ Equ 29:879–901, 2004) and to pass limit as the exponent approaches to the critical exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A., Wang Z.-Q.: Positive solutions to a class of quasilinear elliptic equations on R. Discr. Contin. Dyn. Syst. 9, 55–68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arcoya D., Boccardo L.: Critical points for multiple integrals of the calculus of variations. Arch. Ration. Mech. Anal. 134, 249–274 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arcoya D., Boccardo L.: Some remarks on critical point theory for nondifferentiable functionals. Nonlinear Differ. Eqn. Appl. 6, 79–100 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alves C.O., Figueiredo G.M., Severo U.B.: Multiplicity of positive solutions for a class of quasilinear problems. Adv. Differ. Equ. 14, 911–942 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Berestycki H., Lions P.L.: Nonlinear scalar field equations. I: existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–346 (1983)

    MathSciNet  MATH  Google Scholar 

  6. Brezis H., Nirenberg L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Browder F.E.: Variational methods for nonlinear elliptic eigenvalue problems. Bull. Am. Math. Soc. 71, 176–183 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brüll L., Lange H.: Solitary waves for quasilinear Schrö dinger equations. Expo. Math. 4, 278–288 (1986)

    Google Scholar 

  9. Canino, A., Degiovanni, M.: Nonsmooth critical point theory and quasilinear elliptic equations. In: Topological Methods in Differential Equations and Inclusions (Montreal, PQ, 1994), 1–50, NATO Adv. Sci. Inst. C Math. Phys. Sci., vol. 472. Kluwer, Dordrecht (1995)

  10. Colin M., Jeanjean L.: Solutions for a quasilinear Schödinger equation: A dual approach. Nonlinear Anal. 56, 213–226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. do Ó J.M., Miyagaki O., Soares S.: Soliton solutions for quasilinear Schrödinger equations with critical growth. J. Differ. Equ. 248, 722–744 (2010)

    Article  MATH  Google Scholar 

  12. do Ó J.M., Severo, U.: Solitary waves for a class of quasilinear Schrödinger equations in dimension two. Calc. Var. Partial Differ. Equ. 275–315 (2010)

  13. Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, New York (1983)

    Book  MATH  Google Scholar 

  15. Han, Q., Lin, F.-H.: Elliptic Partial Differential Equations. AMS (2000)

  16. Hasse R.W.: A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z. Phys. B 37, 83–87 (1980)

    Article  MathSciNet  Google Scholar 

  17. Kurihura S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981)

    Article  Google Scholar 

  18. Lange H., Poppenberg M., Teismann H.: Nash-Moser methods for the solution of quasilinear Schrödinger equations. Commun. Partial Differ. Equ. 24, 1399–1418 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lins H.F., Silva E.A.B.: Quasilinear asymptotically periodic elliptic equations with critical growth. Nonlinear Anal. 71, 2890–2905 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Analyse Nonlinéaire 1, 109–145, 223–283 (1984)

    Google Scholar 

  21. Liu J., Wang Z.-Q.: Soliton solutions for quasilinear Schrödinger equations. Proc. AMS 131, 441–448 (2003)

    Article  MATH  Google Scholar 

  22. Liu J., Wang Y., Wang Z.-Q.: Soliton solutions for quasilinear Schrödinger equations, II. J. Differ. Equ. 187, 473–493 (2003)

    Article  MATH  Google Scholar 

  23. Liu J., Wang Y., Wang Z.-Q.: Solutions for quasilinear Schrödinger equations via the Nehari method. Commun. Partial Differ. Equ. 29, 879–901 (2004)

    Article  MATH  Google Scholar 

  24. Moameni A.: Existence of soliton solutions for a quasilinear Schrödinger equation involing critical growth in R N. J. Differ. Equ. 229, 570–587 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moameni A.: On a class of periodic quasilinear Schrödinger equations involing critical growth in R 2. J. Math. Anal. Appl. 334, 775–786 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nakamura A.: Damping and modification of exciton solitary waves. J. Phys. Soc. Jpn. 42, 1824–1835 (1977)

    Article  Google Scholar 

  27. Poppenberg M., Schmitt K., Wang Z.-Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 14, 329–344 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pucci P., Serrin J.: A general variational identity. Indiana Univ. Math. J. 35, 681–703 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rabinowitz, P.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Conf. Ser. in Math. vol. 65. Amer. Math. Soc. (1986)

  30. Rabinowitz P.: On a class of nonlinear Schrödinger equations. Zeitschrift fuer Angewandte Mathematick and. Physik 43, 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Silva E.A.B., Vieira G.F.: Quasilinear asymptotically periodic Schrödinger equations with critical growth. Calc. Var. Partial Differ. Equ. 39, 1–33 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Silva E.A.B., Vieira G.F.: Quasilinear asymptotically periodic Schrödinger equations with subcritical growth. Nonlinear Anal. 72, 2935–2949 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Strauss W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    Article  MATH  Google Scholar 

  34. Willem M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qiang Wang.

Additional information

Communicated by P. Rabinowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Liu, J. & Wang, ZQ. Ground states for quasilinear Schrödinger equations with critical growth. Calc. Var. 46, 641–669 (2013). https://doi.org/10.1007/s00526-012-0497-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0497-0

Mathematics Subject Classification (2000)

Navigation