Skip to main content
Log in

Microscopic theory of novel pseudogap phenomena and Bose-liquid superconductivity and superfluidity in high-\(T_c\) cuprates and other systems

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A unified and empirically adequate microscopic theory of novel pseudogap phenomena and Bose-liquid superconductivity and superfluidity in high-\(T_c\) cuprates and other systems is developed based on the original ideas of the pseudogap state and unusual superconducting/superfluid states of matter. This theory establishes the following laws: (i) the high-\(T_c\) cuprates and other systems with low Fermi energies \(\varepsilon _F\sim \varepsilon _A\) (where \(\varepsilon _A\) is the energy of the attractive interaction between fermionic quasiparticles) are bosonic superconductors and superfluids exhibiting pseudogap behavior above the superconducting/superfluid transition temperature \(T_c\) and a \(\lambda \)-like phase transition at \(T_c\), (ii) the pseudogap state and bosonic Cooper pairs in such systems (with \(\varepsilon _F\lesssim 2\varepsilon _A\) and Bardeen–Cooper–Schrieffer (BCS)-like gap \(\Delta _F > rsim 0.17\varepsilon _F\)) are formed above \(T_c\), (iii) only a minority of preformed bosons condenses into a Bose superfluid at \(T_c\) and (iv) only the systems with \(\varepsilon _F>>\varepsilon _A>>\Delta _F\) become BCS-type conventional or topological fermionic superconductors and superfluids. A modified BCS-like model describes the precursor Cooper pairing of fermionic quasiparticles and the formation of bosonic Cooper pairs above \(T_c\). The criteria for the bosonization of Cooper pairs and fermion–boson transitions are formulated. The mean-field theory describing new laws of condensation of attracting bosons into Bose superfluids below \(T_c\) is presented. The proposed microscopic theory explains all the emerging pseudogap behaviors and unusual superconducting/superfluid states and properties of high-\(T_c\) materials and other systems. In high-\(T_c\) cuprates, the unconventional electron–phonon interactions and polaronic effects give rise to in-gap states, Fermi-surface reconstruction, two distinct pseudogaps and unusual normal-state properties, a quantum critical point and crossover from BCS superconductivity to Bose-liquid superconductivity. The theory of three-dimensional (3D) and two-dimensional (2D) Bose superfluids describes fairly well the novel superconducting states (i.e., the so-called A and B phases below \(T_c\) and an extended A phase and related vortex-like state above \(T_c\)) and properties of high-\(T_c\) cuprates (e.g., \(\lambda \)-like transition at \(T_c\), first-order phase transition at lower temperatures and other unusual features) in accordance with the experimental data. The reasons for suppression and enhancement of superconductivity by disorders in high-\(T_c\) cuprates are discussed. Strongly enhanced 2D Bose-liquid superconductivity emerging within a 3D cuprate superconductor (with the highest bulk \(T_c\)) persists up to room temperature in multi-lamellar blocks and at grain boundaries and interfaces. Most enhanced 3D Bose-liquid superconductivity can emerge at room temperature in high-\(T_c\) hydrides under high pressures. Superconducting/superfluid states and properties of heavy-fermion and organic compounds, ruthenate \((\textrm{Sr}_{2}\textrm{RuO}_{4})\) and possibly high-\(T_c\) hydrides, quantum liquids (\(^3\)He and \(^4\hbox {He}\)) and atomic Fermi gases are also well explained by the proposed theory of Bose superfluids. Finally, new criteria and principles of unconventional superconductivity and superfluidity are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

References

  1. C Kittel, Introduction to Solid State Physics (Nauka, Moscow, 1978)

    MATH  Google Scholar 

  2. A A Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow 1987)

    Google Scholar 

  3. J Bardeen, L N Cooper and J R Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  4. J G Bednorz and K A Müller, Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  5. M K Wu, J R Ashburn, C J Torng, P H Hor, R L Meng, L Gao, Z J Huang, Y Q Wang and C W Chu, Phys. Rev. Lett. 58, 908 (1987)

    Article  ADS  Google Scholar 

  6. B Batlogg, H Y Hwang, H Takagi, R J Cava, H L Kao and J Kwo, Physica C 235–240, 130 (1994)

    Article  ADS  Google Scholar 

  7. H Ding, T Yokoya, J C Campuzano, T Takahashi, M Randeria, M R Norman, T Mochiku, K Kadowaki and J Giapintzakis, Nature 382, 51 (1996)

    Article  ADS  Google Scholar 

  8. A G Loeser, Z-X Shen, D S Dessau, D S Marshall, C H Park, P Fournier and A Kapitulnik, Science 273, 325 (1996)

    Article  ADS  Google Scholar 

  9. A V Puchkov, D N Basov and T Timusk, J. Phys.: Condens. Matter 8, 10049 (1996)

    ADS  Google Scholar 

  10. D D Osheroff, R C Richardson and D M Lee, Phys. Rev. Lett. 28, 885 (1972)

    Article  ADS  Google Scholar 

  11. F Steglich, J Aarts, C D Bredl, W Lieke, D Meschede, W Franz and H Schäfer, Phys. Rev. Lett. 43, 1892 (1979)

    Article  ADS  Google Scholar 

  12. D Jerome, A Mazaud, M Ribault and K Bechgaard, J. Physique Lett. (Paris) 41, 98 (1980)

    Article  Google Scholar 

  13. D Jerome and H J Schultz, Adv. Phys. 31, 399 (1982)

    Article  Google Scholar 

  14. H R Ott, H Rudigier, Z Fisk and J L Smith, Phys. Rev. Lett. 50, 1595 (1983)

    Article  ADS  Google Scholar 

  15. G R Stewart, Z Fisk, J O Willis and J L Smith, Phys. Rev. Lett. 52, 679 (1984)

    Article  ADS  Google Scholar 

  16. H Magaffre, P Wzietek, C Lenoir, D Jérome and P Batail, Europhys. Lett. 28, 205 (1994)

    Article  ADS  Google Scholar 

  17. M B Maple, Physica C 341–348, 47 (2000)

    Article  ADS  Google Scholar 

  18. M Dressel, N Kasper, K Petukhov, B Gorshunov, G Griiner, M Huth and H Adrian, Phys. Rev. Lett. 88, 182404 (2002)

    Article  Google Scholar 

  19. E Snider, N Dasenbrock-Gammon, R McBride, M Debessai, H Vindana, K Vencatasamy, K V Lawler, A Salamat and R P Dias, Nature 586, 373 (2020)

    Article  ADS  Google Scholar 

  20. T Timusk and B Statt, Rep. Prog. Phys. 62, 61 (1999)

    Article  ADS  Google Scholar 

  21. M V Sadowskii, Usp. Fiz. Nauk. 171, 539 (2001)

    Article  Google Scholar 

  22. S Doniach and M Inui, Phys. Rev. B 41, 6668 (1990)

    Article  ADS  Google Scholar 

  23. S Dzhumanov and P K Khabibullaev, Izv. Akad. Nauk Uzb. SSR Ser. Fiz. Mat. Nauk 1, 47 (1990)

    Google Scholar 

  24. S Dzhumanov, Physica C 235–240, 2269 (1994)

    Article  ADS  Google Scholar 

  25. S Dzhumanov and P K Khabibullaev, Pramana – J. Phys. 45, 385 (1995)

  26. V J Emery and S A Kivelson, Nature 374, 434 (1995)

    Article  ADS  Google Scholar 

  27. T Sasaki, N Yoneyama, A Matsuyama and N Kobayashi, Phys. Rev. B 65, 060505 (2002)

    Article  ADS  Google Scholar 

  28. S Wirth, Y Prots, M Wedel, S Ernst, S Kirchner, Z Fisk, J D Thompson, F Steglich and Y Grin, J. Phys. Soc. Jpn 83, 061009 (2014)

    Article  ADS  Google Scholar 

  29. J P Gaebler, J T Stewart, T E Drake, D S Jin, A Perali, P Pieri and G S Strinati, Nature Phys. 6, 569 (2010)

    Article  Google Scholar 

  30. A P Drozdov, P P Kong, V S Minkov, S P Besedin, M A Kuzovnikov, S Mozaffari, L Balicas, F F Balakirev, D E Graf, V B Prakapenka, E Greenberg, D A Knyazev, M Tkacz and M I Eremets, Nature 569, 528 (2019)

    Article  ADS  Google Scholar 

  31. D S Hikashima and T Matsuura, J. Phys. Soc. Jpn 59, 24 (1990)

    Article  ADS  Google Scholar 

  32. B H Brandov, Int. J. Mod. Phys. B 8, 3859 (1994)

    Article  ADS  Google Scholar 

  33. R Joynt and L Taillefer, Rev. Mod. Phys. 74, 235 (2002)

    Article  ADS  Google Scholar 

  34. D R Tilley and J Tilley, Superfluidity and Superconductivity (Adam Hilger, Bristol, 1990)

    Google Scholar 

  35. N F Mott, Physica C 205, 191 (1993)

    Article  ADS  Google Scholar 

  36. P Schiffer and D D Osheroff, Rev. Mod. Phys. 67, 491 (1995)

    Article  ADS  Google Scholar 

  37. T Matsuzaki, M Ido, N Momono, R M Dipasupil, T Nagata, A Sakai and M Oda, J. Phys. Chem. Solids 62, 29 (2001)

    Article  ADS  Google Scholar 

  38. D N Basov and T Timusk, Rev. Mod. Phys. 77, 721 (2005)

    Article  ADS  Google Scholar 

  39. P A Lee, N Nagaosa and X-G Wen, Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  40. P Bozek, Nucl. Phys. A 657, 187 (1999), arXiv:nuclth/9902019

    Article  ADS  Google Scholar 

  41. P W Anderson, Fiz. Nizk. Temp. 32, 381 (2006)

    Google Scholar 

  42. R Friedberg and T D Lee, Phys. Lett. A 138, 423 (1989)

    Article  ADS  Google Scholar 

  43. T Tanamoto, K Kohno and H Fukuyama, J. Phys. Soc. Jpn. 61, 1886 (1992)

    Article  ADS  Google Scholar 

  44. J R Schriffer and A P Kampf, J. Phys. Chem. Solids 56, 1673 (1995)

    Article  ADS  Google Scholar 

  45. J Ranninger and J M Robin, Physica C 253, 279 (1995)

    Article  ADS  Google Scholar 

  46. V B Geshkenbein, L B Ioffe and A I Larkin, Phys. Rev. B 55, 3173 (1997)

    Article  ADS  Google Scholar 

  47. A S Alexandrov, Theory of Superconductivity: from weak to strong coupling (IoP Publishing, Bristol, 2003)

    Article  ADS  Google Scholar 

  48. M Eschrig, Adv. Phys. 55, 47 (2006)

    Article  ADS  Google Scholar 

  49. V Z Kresin and S A Wolf, Rev. Mod. Phys. 81, 481 (2009)

    Article  Google Scholar 

  50. M R Norman, Physics 3, 86 (2010)

  51. J Zaanen, arXiv:cond-mat/0103255, (2001) 7 pages

  52. G Baskaran, E Tosatti and L Yu, Int. J. Mod. Phys. B 1, 555 (1988)

    Article  ADS  Google Scholar 

  53. X Dai, Z-B Su and L Yu, Phys. Rev. B 56, 5583 (1997)

    Article  ADS  Google Scholar 

  54. P Phillips, Rev. Mod. Phys. 82, 1719 (2010)

    Article  Google Scholar 

  55. B K Chakraverty, A Avignon and D Feinberg, J. Less-Common Metals 150, 11 (1989)

    Book  Google Scholar 

  56. J Lorenzana and L Yu, Mod. Phys. Lett. B 5, 1515 (1991)

    Article  ADS  Google Scholar 

  57. M A Kastner, R J Birgeneau, G Shirane and Y Endoh, Rev. Mod. Phys. 70, 897 (1998)

    Article  ADS  Google Scholar 

  58. S Dzhumanov, A Baratov and S Abboudy, Phys. Rev. B 54, 13121 (1996)

    Article  ADS  Google Scholar 

  59. A Lanzara, P V Bogdanov, X J Zhou, S A Kellar, D L Feng, E D Lu, T Yoshida, H Eisaki, A Fujimori, K Kishio, J-I Shimoyama, T Moda, S Uchida, Z Hussain and Z-X Shen, Nature 412, 510 (2001)

  60. K Sarkar, S Banerjee, S Mukerjee and T M Ramakrishnan, Ann. Phys. 365, 7 (2016)

    Article  ADS  Google Scholar 

  61. S Dzhumanov, P J Baimatov, A A Baratov and N I Rahmatov, Physica C 235–240, 2339 (1994)

    Article  ADS  Google Scholar 

  62. J L Tallon and J W Loram, Physica C 349, 53 (2001)

    Article  ADS  Google Scholar 

  63. J E Sonier, J H Brewer, R F Kiefl, R I Miller, G D Morris, C E Stronach, J S Gardner, S R Dunsiger, D A Boon, W N Hardy, R Liang and R H Heffner, Science 292, 1692 (2001)

    Article  ADS  Google Scholar 

  64. D van der Marel, H J A Molegraaf, J Zaanen, Z Nussinov, F Carbone, A Damascelli, H Eisaki, M Greven, P H Kes and M Li, Nature 425, 271 (2003)

    Article  ADS  Google Scholar 

  65. A Shekhter, B J Ramshaw, R Liang, W N Hardy, D A Bonn, F F Balakirev, R D McDonald, J B Betts, S C Riggs and A Migliori, Nature 498, 75 (2013)

    Article  ADS  Google Scholar 

  66. V J Emery, S A Kivelson and O Zachar, Phys. Rev. B 56, 6120 (1997)

    Article  ADS  Google Scholar 

  67. L B Ioffe and A J Millis, Science 285, 1241 (1999)

    Article  Google Scholar 

  68. F Rullier-Albenque, H Alloul and R Tourbot, Phys. Rev. Lett. 91, 047001 (2003)

    Article  ADS  Google Scholar 

  69. K Gorny, O M Vyaselew, J A Martindale, V A Nandor, C H Pennington, P C Hammel, W L Hults, J L Smith, P L Kuhns, A P Reyes and W G Moulton, Phys. Rev. Lett. 82, 177 (1999)

    Article  ADS  Google Scholar 

  70. K Fossheim, O M Nes, T Laegreid, C N W Darlington, D A O’Connor and C E Gough, Int. J. Mod. Phys. B 1, 1171 (1988)

    Article  ADS  Google Scholar 

  71. S E Inderhees, M B Salamon, N Goldenfeld, J P Rice, B G Pazol, D M Ginsberg, J Z Liu and W Crabtree, Phys. Rev. Lett. 60, 1178 (1988)

    Article  ADS  Google Scholar 

  72. S Dzhumanov, Int. J. Mod. Phys. B 12, 2151 (1998)

    Article  ADS  Google Scholar 

  73. S Dzhumanov, Solid State Commun. 115, 155 (2000)

    Article  ADS  Google Scholar 

  74. D M Eagles, Phys. Rev. 186, 456 (1969)

    Article  ADS  Google Scholar 

  75. S Dzhumanov, E X Karimboev and Sh S Djumanov, Phys. Lett. A 380, 2173 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  76. C M Varma, Phys. Rev. B 55, 14554 (1997)

    Article  ADS  Google Scholar 

  77. J Schmalian, D Pines and B Stojkovic, Phys. Rev. B 60, 667 (1999)

    Article  ADS  Google Scholar 

  78. C Di Castro, M Grilli, S Caprara and D Suppa, J. Phys. Chem. Solids 67, 160 (2006)

    Article  ADS  Google Scholar 

  79. C M Varma, Nature 468, 184 (2010)

    Article  ADS  Google Scholar 

  80. F Pistolesi and G S Strinati, Phys. Rev. B 49, 6356 (1994); Phys. Rev B 53, 15168 (1996)

  81. V V Tolmachev, Phys. Lett. A 266, 400 (2000)

    Article  ADS  Google Scholar 

  82. A J Leggett, in Modern Trends in the Theory of Condensed Matter (Springer, Berlin, 1980) pp. 13–27

  83. P Nozieres and S Schmitt-Rink, J. Low. Temp. Phys. 59, 195 (1985)

    Article  ADS  Google Scholar 

  84. W A B Evans and Y Imry, Nuovo Cimento B 63, 155 (1969)

    Article  ADS  Google Scholar 

  85. P W Anderson, The Theory of Superconductivity in the High-\(T_c\)Cuprates (Princeton University Press, Princeton, 1997)

  86. D Emin and M S Hillery, Phys. Rev. B 39, 6575 (1989)

    Article  ADS  Google Scholar 

  87. G Verbist, F M Peeters and J T Devreese, Phys. Scripta T39, 66 (1991)

    Article  ADS  Google Scholar 

  88. S Dzhumanov, P J Baimatov and A A Baratov and P K Khabibullaev, Physica C 254, 311 (1995)

    Article  ADS  Google Scholar 

  89. J Zaanen, G A Sawatzky and J W Allen, Phys. Rev. Lett. 55, 418 (1985)

    Article  ADS  Google Scholar 

  90. M Imada, A Fujimori and Y Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  91. A Damascelli, Z Hussain and Z-X Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  92. J Fink, N Nucker, M Alexander, H Romberg, M Knupfer, M Merkel, P Adelmann, R Claessen, G Monte, T Buslaps, S Harm, R Manzke and M S Skibowski, Physica C 185–189, 45 (1991)

    Article  ADS  Google Scholar 

  93. Ch B Lushchik and A Ch Lushchik, Decay of Electronic Excitations with Defect Formation in Solids (Nauka, Moscow, 1989)

  94. S Dzhumanov and P K Khabibullaev, Phys. Stat. Sol. B 152, 395 (1989)

    Article  ADS  Google Scholar 

  95. Y Toyozawa, Physica B 116, 7 (1983)

    Article  Google Scholar 

  96. K S Song and R T Williams, Self-Trapped Excitons (Springer, Berlin, 1996)

    Book  Google Scholar 

  97. J P Lu and Q Si, Phys. Rev. B 42, 950 (1990)

    Article  ADS  Google Scholar 

  98. Ch Kittel, Quantum Theory of Solids (Nauka, Moscow, 1967)

    MATH  Google Scholar 

  99. R C Baetzold, Phys. Rev. B 42, 56 (1990)

    Article  ADS  Google Scholar 

  100. S Dzhumanov, P J Baimatov, Sh T Inoyatov, Sh S Djumanov and A G Gulyamov, Phys. Lett. A 383, 1330 (2019)

    Article  ADS  Google Scholar 

  101. X X Bi and P C Eklund, Phys. Rev. Lett. 70, 2625 (1993)

    Article  ADS  Google Scholar 

  102. Th Timusk and D B Tanner, in Physical Properties of High Temperature Superconductors I (Ed. DM Ginsberg, Mir, Moscow, 1990)

  103. T H H Vuong, D C Tsui, V G Goldman, P H Hor and R L Meng, Solid State Commun. 63, 525 (1987)

    Article  ADS  Google Scholar 

  104. S Uchida, Physica C 185–189, 28 (1991)

    Article  ADS  Google Scholar 

  105. T Ekino, S Hashimoto, H Fujii, J Hori, F Nakamura and T Fujita, Physica C 357–360, 158 (2001)

    Article  ADS  Google Scholar 

  106. D Mihailovic, T Mertelj and K A Müller, Phys. Rev. B 57, 6116 (1998)

    Article  ADS  Google Scholar 

  107. T Takahashi, T Sato, T Yokoya, T Kamiyama, Y Naitoh, T Mochiki, K Yamada, Y Endoh and K Kadowaki, J. Phys. Chem. Solids 62, 41 (2001)

    Article  ADS  Google Scholar 

  108. A Ino, T Mizokawa, K Kobayashi and A Fujimori, Phys. Rev. Lett. 81, 2124 (1998)

    Article  ADS  Google Scholar 

  109. A Ino, C Kim, M Nakamura, T Yoshida, T Mizokawa, A Fujimori, Z-X Shen, T Kakeshita, H Eisaki and S Uchida, Phys. Rev. B 65, 094504 (2002)

    Article  ADS  Google Scholar 

  110. S Sugai, Physica C 185–189, 76 (1991)

    Article  ADS  Google Scholar 

  111. M Le Tacon, A Bosak, S M Souliou, G Dellea, T Loew, R Heid, K-P Bohnen, G Ghiringhelli, M Krisch and B Keimer, Nature Phys. 10, 52 (2014)

    Article  Google Scholar 

  112. E M Forgan, E Blakburn, A T Holmes, A K R Briffa, J Chang, L Bouchenoire, S D Brown, L G Ruixing, D Bonn, W N Hardy, N B Christensen, M V Zimmermann, M Hücker and S M Hayden, Nature Commun. 6, 10064 (2015)

    Article  ADS  Google Scholar 

  113. M Miao, D Ishikawa, R Heid, M LeTakon, G Fabbris, D Meyers, G D Gu, A Q R Baron and M P M Dean, Phys. Rev. X 8, 011008 (2018)

    Google Scholar 

  114. H Ding, M R Norman, T Yokoya, T Takeuchi, M Randeria, J C Campuzano, T Takahashi, T Mochiku and K Kadowaki, Phys. Rev. Lett. 78, 2628 (1997)

    Article  ADS  Google Scholar 

  115. Y Kohsaka, C Taylor, P Wahl, A Schmidt, J Lee, K Fujita, J W Alledredge, K McElroy, J Lee, H Eisaki, S Uchida, D-H Lee and J C Davis, Nature 454, 1072 (2008)

  116. S Dzhumanov, P J Baimatov, O K Ganiev, Z S Khudayberdiev and B V Turimov, J. Phys. Chem. Solids 73, 484 (2012)

    Article  ADS  Google Scholar 

  117. D Mihailovic, V V Kabanov, K Zagar and J Demsar, Phys. Rev. B 60, R6995 (1999)

    Article  ADS  Google Scholar 

  118. D LeBoeuf, N Doiron-Leyraud, J Levallois, R Daou, J-B Bonnemaison, N E Hussey, L Balicas, B J Ramshaw, R Liang, D A Bonn, W N Hardy, S Adachi, C Proust and L Taillefer, Nature 450, 533 (2007)

    Article  ADS  Google Scholar 

  119. R Daou, O Cyr-Choiniere, F Laliberte, D LeBoeuf, N Doiron-Leyraud, J-Q Yan, J-S Zhou, J B Goodenough and L Taillefer, Phys. Rev. B 79, 180505 (2009)

    Article  ADS  Google Scholar 

  120. I M Vishik, M Hashimoto, R-H He, W-S Lee, F Schmitt, D Lu, R G Moore, C Zhang, W Meevasana, T Sasagawa, S Uchida, K Fujita, S Ishida, M Ishikado, Y Yoshida, H Eisaki, Z Hussain, T P Devereaux and Z X Shen, PNAS 109, 18332 (2012)

    Article  ADS  Google Scholar 

  121. C C Tsuei and J R Kirtley, Rev. Mod. Phys. 72, 969 (2000)

    Article  ADS  Google Scholar 

  122. A G Sun, D A Gajewski, M B Maple and R C Dynes, Phys. Rev. Lett. 72, 2267 (1994)

    Article  ADS  Google Scholar 

  123. P Chaudhari and S Y Lin, Phys. Rev. Lett. 72, 1084 (1994)

    Article  ADS  Google Scholar 

  124. D R Harshman, W J Kossler, X Wan, A T Fiory, A J Greer, D R Noakes, C E Stronach, E Koster and J D Dow, Phys. Rev. B 69, 174505 (2004)

    Article  ADS  Google Scholar 

  125. G Deutscher, Rev. Mod. Phys. 77, 109 (2005)

    Article  ADS  Google Scholar 

  126. Q Li, Y N Tsay, M Suenaga, R A Klemm, G D Gu and N Koshizuka, Phys. Rev. Lett. 83, 4160 (1999)

    Article  ADS  Google Scholar 

  127. K A Müller, J. Supercond. 17, 3 (2004)

    Article  ADS  Google Scholar 

  128. L Pietronero, S Strässler and C Grimaldi, Phys. Rev. B 52, 10516 (1995)

    Article  ADS  Google Scholar 

  129. M Tinkham, Introduction to Superconductivity (Atomizdat, Moscow, 1980)

    Google Scholar 

  130. Yu B Rumer and M Sh Rivkin, Thermodynamics, Statistical Physics and Kinetics (Nauka, Moscow, 1977)

    Google Scholar 

  131. Ø Fischer, M Kugler, I Maggio-Aprile, C Berthod and Ch Renner, Rev. Mod. Phys. 79, 353 (2007)

    Article  ADS  Google Scholar 

  132. J K Ren, X B Zhu, H F Yu, Ye Tian, H F Yang, C Z Gu, N L Ren and S P Zhao, Sci. Rep. 2, 248 (2012)

  133. M Oda, K Hoya, R Kubota, C Manabe, N Momono, T Nakano and M Ido, Physica C 281, 135 (1997)

    Article  ADS  Google Scholar 

  134. B Leridon, P Monod, D Colson and A Forget, Europhys. Lett. 87, 17011 (2009)

    Article  ADS  Google Scholar 

  135. J L Tallon, J W Loram, J R Cooper, C Panagopoulos and C Berhard, Phys. Rev. B 68, 180501 (2003)

    Article  ADS  Google Scholar 

  136. K Ishida, K Yoshida, T Mito, Y Tokunaga, Y Kitaoka, K Asayama, Y Nakayama, J Shimoyama and K Kishio, Phys. Rev. B 58, R5960 (1998)

    Article  ADS  Google Scholar 

  137. T Watanabe, T Fujii and A Matsuda, Phys. Rev. Lett. 84, 5848 (2000)

    Article  ADS  Google Scholar 

  138. A Kaminski, S Rosenkranz, H M Fretwell, Z Z Li, H Raffy, M Randeria, M R Norman and J C Campuzano, Phys. Rev. L Lett. 90, 207003 (2003)

    Article  ADS  Google Scholar 

  139. J W Radcliffe, N Athanassopoulou, J M Wade, J R Cooper, J L Tallon and J W Loram, Physica C 235–240, 1415 (1994)

    Article  ADS  Google Scholar 

  140. T Adachi, T Noji and Y Koike, J. Phys. Chem. Solids 63, 1097 (2002)

    Article  ADS  Google Scholar 

  141. J Mosqueira, A Diaz, A Pomar, O Cabeza, J A Veira, J Maza and F Vidal, Physica C 235–240, 1397 (1994)

    Article  ADS  Google Scholar 

  142. S Uchida, Physica C 341–348, 823 (2000)

    Article  ADS  Google Scholar 

  143. Y Koike and T Adachi, Physica C 481, 115 (2012)

    Article  ADS  Google Scholar 

  144. A Ulug, B Ulug and R Yagbasan, Physica C 235–240, 879 (1994)

    Article  ADS  Google Scholar 

  145. E Aharoni and G Koren, Physica C 235–240, 3339 (1994)

    Article  ADS  Google Scholar 

  146. B P Stojkoviċ and D Pines, Phys. Rev. B 55, 8576 (1997)

    Article  ADS  Google Scholar 

  147. S Dzhumanov, O K Ganiev and Sh S Djumanov, Physica B 440, 17 (2014)

    Article  ADS  Google Scholar 

  148. I M Tsidilkovski, Electrons and Holes in Semiconductors (Nauka, Moscow, 1972)

    Google Scholar 

  149. M Houssa and M Ausloos, Physica C 265, 258 (1996)

    Article  ADS  Google Scholar 

  150. P B Allen, Z Fisk and A Migliray, in Physical Properties of High Temperature Superconductors I (edited by D M Ginsberg, Mir, Moscow, 1990)

  151. R V Vovk, N R Vovk, O V Shekhovtsov, I L Goulatis and A Chroneos, Supercond. Sci. Technol. 26, 085017 (2013)

    Article  ADS  Google Scholar 

  152. A El Azrak, L A De Vaulchier, N Bontemps, C Thivet, M Guilloux-Viry, A Perrin, B Wuyts, M Maenhoudt and E Osquiguil, Physica C 235–240, 1431 (1994)

  153. M Suzuki and T Murakami, Jpn. J. Appl. Phys. 26, L524 (1987)

    Article  ADS  Google Scholar 

  154. A Matsuda, T Fujii and T Watanabe, Physica C 388–389, 207 (2003)

    Article  ADS  Google Scholar 

  155. B W Hoogenboom, C Berthod, M Peter, Ø Fischer and A A Kordyuk, Phys. Rev. B 67, 224502 (2003)

    Article  ADS  Google Scholar 

  156. J Nieminen, H Lin, R S Markiewicz and A Bansil, Phys. Rev. Lett. 102, 037001 (2009)

    Article  ADS  Google Scholar 

  157. M Eschring and M R Norman, Phys. Rev. Lett. 85, 3261 (2000)

    Article  ADS  Google Scholar 

  158. Z F Zasadzinski, L Coffey, P Romano and Z Yusof, Phys. Rev. B 68, 180504 (2003)

    Article  ADS  Google Scholar 

  159. W Sacks, T Gren, D Roditchev and B Douçot, Phys. Rev. B 74, 174517 (2006)

    Article  ADS  Google Scholar 

  160. S Dzhumanov, O K Ganiev and Sh S Djumanov, Physica B 427, 22 (2013)

    Article  ADS  Google Scholar 

  161. K McElroy, D-H Lee, J E Hoffman, K M Lang, E W Hudson, H Eisaki, S Uchida, J Lee and JC Davis, Phys. Rev. Lett. 94, 197005 (2005)

    Article  ADS  Google Scholar 

  162. A C Fang, L Capriotti, D J Scalapino, S A Kivelson, N Kaneko, M Greven and A Kapitulnik, Phys. Rev. Lett. 96, 017007 (2006)

    Article  ADS  Google Scholar 

  163. Ch Renner, B Revaz, J-Y Genoud, K Kadowaki and Ø Fischer, Phys. Rev. Lett. 80, 149 (1998)

    Article  ADS  Google Scholar 

  164. A Matsuda, S Sugita, T Fujii and T Watanabe, J. Phys. Chem. Solids 62, 65 (2001)

    Article  ADS  Google Scholar 

  165. P Mallet, D Roditchev, W Sacks, D Defourneau and J Klein, Phys. Rev. B 54, 13324 (1996)

    Article  ADS  Google Scholar 

  166. N Miyakawa, J F Zasadzinski, L Ozyuzer, P Guptasarma, D G Hinks, C Kendziora and K E Gray, Phys. Rev. Lett. 83, 1018 (1999)

    Article  ADS  Google Scholar 

  167. S Dzhumanov, arXiv:1709:02110 (2017)

  168. P C W Fung and W Y Kwok, J. Supercond. 4, 67 (1991)

    Article  ADS  Google Scholar 

  169. J W Loram, K A Mirza and J R Cooper, IRC Res. Rev. 3, 77 (1998)

    Google Scholar 

  170. F-S Liu, W-F Liu, W-F Chen and K Peng, J. Phys.: Condens. Matter 13, 2817 (2001)

    ADS  Google Scholar 

  171. S Dzhumanov and E X Karimboev, Physica A 406, 176 (2014)

    Article  ADS  Google Scholar 

  172. V Z Kresin, H Morawitz and S A Wolf, Mechanisms of Conventional and High\(T_c\)Superconductivity (Oxford University Press, New York–Oxford, 1993)

  173. M Muroi and R Street, Physica C 246, 357 (1995)

    Article  ADS  Google Scholar 

  174. A Junod, D Sanchez, J-Y Genoud, T Graf, G Triscone and J Muller, Physica C 185–189, 1399 (1991)

    Article  ADS  Google Scholar 

  175. L D Landau and E M Lifshitz, Statistical Physics (Part I, Nauka, Moscow, 1976)

  176. B D Dunlap, M V Nevitt, M Slaski, T E Klippert, Z Sungaila, A G McKale, D W Capone, R B Poeppel and B K Flandermeyer, Phys. Rev. B 35, 7210 (1987)

    Article  ADS  Google Scholar 

  177. G-M Zhao, H Keller and K Conder, J. Phys.: Condens. Matter 13, R569 (2001)

    Google Scholar 

  178. A R Bishop, A Bussmann-Holder, O V Dolgov, A Furrer, H Kamimura, H Keller, R Khasanov, R K Kremer, D Manske, K A Müller and A Simon, J. Supercond. Nov. Magn. 20, 393 (2007)

    Article  Google Scholar 

  179. J Appel, in Polarons (edited by Yu A Firsov, Nauka, Moscow, 1975)

  180. G V M Williams, J L Tallon, J W Quilty, H J Trodahl and N E Flower, Phys. Rev. Lett. 80, 377 (1998)

    Article  ADS  Google Scholar 

  181. D R Temprano, K Conder, A Furrer, H Mutka, V Trounov and K A Müller, Phys. Rev. B 66, 184506 (2002)

    Article  ADS  Google Scholar 

  182. J L Tallon, R S Islam, J Storey, G V M Williams and J R Cooper, Phys. Rev. Lett. 94, 237002 (2005)

    Article  ADS  Google Scholar 

  183. F Raffa, T Ohno, M Mali, J Roos, D Brinkmann, K Conder and M Eremin, Phys. Rev. Lett. 81, 5912 (1998)

    Article  ADS  Google Scholar 

  184. A Lanzara, G-M Zhao, N L Saint, A Bianconi, K Conder, H Keller and K A Müller, J. Phys.: Condens. Matter 11, L541 (1999)

    Google Scholar 

  185. D R Temprano, J Mesot, S Janssen, K Conder, A Furrer, H Mutka and K A Müller, Phys. Rev. Lett. 84, 1990 (2000)

    Article  ADS  Google Scholar 

  186. D R Temprano, J Mesot, S Janssen, K Conder, A Furrer, A Sokolov, V Trounov, S M Kazakov, J Karpinski and K A Müller, Eur. Phys. J. B 19, 5 (2001)

    Article  ADS  Google Scholar 

  187. A Furrer, K Conder, P Häfliger and A Podlesnyak, Physica C 408–410, 773 (2004)

    Article  ADS  Google Scholar 

  188. K Ichimura and K Nomura, J. Phys. Soc. Japan 75, 051012 (2006)

    Article  ADS  Google Scholar 

  189. N L Wang, B P Clayman, H Mori and S Tanaka, Physica B 284–288, 513 (2000)

    Article  ADS  Google Scholar 

  190. K Hannewald, V M Stojanovic, J M T Schellekens, P A Bobbert, G Kresse and J Hafner, Phys. Rev. B 69, 075211 (2004)

    Article  ADS  Google Scholar 

  191. W Fan, arXiv:0904.4726

  192. K D Meisel, H Vocks and P A Bobbert, Phys. Rev. B 71, 205206 (2005)

    Article  ADS  Google Scholar 

  193. R L Greene, in Proceedings of the International Conference on Organic Superconductivity (Plenum Press, New York, pp. 7–13 1990)

  194. S A Wolf and V Z Kresin, in Proceedings of the International Conference on Organic Superconductivity (Plenum Press, New York, pp. 31–38, 1990)

  195. H Okamura, T Michizawa, T Nanba and T Ebihara, J. Phys. Soc. Jpn 73, 2045 (2004)

    Article  ADS  Google Scholar 

  196. P Aynajian, E H da Silva Neto, B B Zhou, Sh Misra, R E Baumbach, Z Fisk, J Mydosh, J D Thompson, E D Bauer and A Yazdani, J. Phys. Soc. Jpn. 83, 061008 (2014)

  197. A Gyenis, B E Feldman, M T Randeria, G A Peterson, E D Bauer, P Aynajian and A Yazdani, Nature Commun. 9, 549 (2018)

    Article  ADS  Google Scholar 

  198. A J Leggett, Rev. Mod. Phys. 47, 331 (1975)

    Article  ADS  Google Scholar 

  199. D Vollhardt and P Wölfle, The Superfluid Phases of Helium-3 (London, Taylor and Francis, 1990)

    MATH  Google Scholar 

  200. E R Dobbs, Helium Three (Oxford, Oxford University Press, 2000)

    Google Scholar 

  201. G P Meisner, A L Giorgi, A C Lawson, G R Stewart, J O Willis, M S Wire and J L Smith, Phys. Rev. Lett. 53, 1829 (1984)

    Article  ADS  Google Scholar 

  202. P W Anderson and P Morel, Phys. Rev. 123, 1911 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  203. R Balain and N R Werthamer, Phys. Rev. 131, 1553 (1963)

    Article  ADS  Google Scholar 

  204. Y H Huang, Physics Procedia 67, 582 (2015)

    Article  ADS  Google Scholar 

  205. D M Lee, Rev. Mod. Phys. 69, 645 (1997)

    Article  ADS  Google Scholar 

  206. J R Schrieffer and M Tinkham, Rev. Mod. Phys. 71, S313 (1999)

    Article  Google Scholar 

  207. M A Baranov, M Yu Kagan and Yu Kagan, JETP Lett. 64, 301 (1996)

    Article  ADS  Google Scholar 

  208. A S Alexandrov and A M Bratkovsky, Phys. Rev. Lett. 105, 226408 (2010)

    Article  ADS  Google Scholar 

  209. F London, Superfluids (Wiley New York, 1954)

    MATH  Google Scholar 

  210. L D Landau, J. Phys. (Moscow) 5, 71 (1941)

    Google Scholar 

  211. N N Bogoliubov, J. Phys. (Moscow) 11, 23 (1947)

    Google Scholar 

  212. M Luban, Phys. Rev. 128, 965 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  213. P Dorre, H Hang and D B Tran Thoai, J. Low Temp. Phys. 35, 465 (1979)

  214. S C Whitmore and W Zimmerman, Phys. Rev. Lett. 15, 389 (1965)

    Article  ADS  Google Scholar 

  215. A W Steyert, R D Taylor and T A Kitchens, Phys. Rev. Lett. 15, 546 (1965)

    Article  ADS  Google Scholar 

  216. R Hasting and J W Halley, Phys. Rev. B 12, 267 (1975)

    Article  ADS  Google Scholar 

  217. I V Bogoyavlensky, L V Kamatsevich, G A Kozlow and A V Puchkov, Fiz. Nisk. Temp. 16, 139 (1990)

    ADS  Google Scholar 

  218. R A Cowley and A D B Woods, Can. J. Phys. 49, 177 (1971)

    Article  ADS  Google Scholar 

  219. J G Valatin and D Butler, Nuovo Cimento 10, 37 (1958)

    Article  Google Scholar 

  220. W A B Evans and C G Harris, J. Phys. Colloq. (Paris) C6 39, 237 (1978)

    Google Scholar 

  221. S T Beliaev, Sov. Phys. JETP 7, 289 (1958)

    Google Scholar 

  222. P Nozieres and D Saint James, J. Phys. (Paris) 43, 1133 (1982)

    Article  Google Scholar 

  223. W A B Evans, Physica B 165–166, 513 (1990)

    Article  ADS  Google Scholar 

  224. A Coniglio, F Mancini and M Maturi, Nuovo Cimento B 63, 227 (1969)

    Article  ADS  Google Scholar 

  225. E A Pashitskii, S V Mashkevich and S I Vilchynskyy, Phys. Rev. Lett. 89, 075301 (2002)

    Article  ADS  Google Scholar 

  226. M J Rice and Y R Wang, Phys. Rev. B 37, 5893 (1988)

    Article  ADS  Google Scholar 

  227. J M Wheatley, T C Hsu and P W Anderson, Phys. Rev. B 37, 5897 (1988)

    Article  ADS  Google Scholar 

  228. P J Baymatov, Ph.D. thesis (Department of Thermal Physics, Uzbek Academy of Sciences, 1995)

  229. R Micnas, J Ranninger and S Robaszhkiewicz, Rev. Mod. Phys. 62, 113 (1990)

    Article  ADS  Google Scholar 

  230. S Hüfner, M A Hossain, A Damascelli and G A Sawatzky, Rep. Prog. Phys. 71, 062501 (2008)

    Article  ADS  Google Scholar 

  231. K Kawabata, S Tsukui, Y Shono, O Michikami, H Sasakura, K Yoshiara, Y Kokehi and T Yotsuya, Phys. Rev. B 58, 2458 (1998)

    Article  ADS  Google Scholar 

  232. J E Gordon, S Prigge, S J Collocott and R Driver, Physica C 185–189, 1351 (1991)

    Article  ADS  Google Scholar 

  233. J M Barbut, D Bourgault, N Schopohe, A Sulpice and R Tournier, Physica C 235–240, 2855 (1994)

    Article  ADS  Google Scholar 

  234. Y Tanaka, A Iyo, S Itoh, K Tokiwa, T Nishio and T Yanagisawa, J. Phys. Soc. Jpn. 83, 074705 (2014)

    Article  ADS  Google Scholar 

  235. M A Izbizky, M Nunez Regueiro, P Esquinazi and C Fainstein, Phys. Rev. B 38, 9220 (1988)

  236. S Dzhumanov, P J Baimatov and P K Khabibullaev, Uzb. Zh. Phys. 6, 24 (1992)

    Google Scholar 

  237. S Dzhumanov, P J Baimatov and N I Rahmatov, (Abstract 2nd Liquid Matter Conf. Firenze, Italy, 1993)

  238. C C Tsuei, J R Kirtley, C C Chi, L S Yu-Jahnes, A Cupta, T Shaw, J Z Sun and M B Ketchen, Phys. Rev. Lett. 73, 593 (1994)

    Article  ADS  Google Scholar 

  239. J R Kirtley, C C Tsuei and K A Moler, Science 285, 1373 (1999)

    Article  Google Scholar 

  240. N Momono and M Ido, Physica C 264, 311 (1996)

    Article  ADS  Google Scholar 

  241. V N Naumov, G I Frolova, E B Amitin, V E Fedorov and P P Samoilov, Physica C 262, 143 (1996)

    Article  ADS  Google Scholar 

  242. E M Lifshitz and L P Pitaevskii, Stat. Phys. (Part 2, Nauka, Moscow, 1978)

  243. J Carini, L Drabeck and G Grüner, Mod. Phys. Lett. B 3, 5 (1989)

    Article  ADS  Google Scholar 

  244. G Deutscher, Phys. Scr. T29, 9 (1989)

    Article  ADS  Google Scholar 

  245. E B Eom, J Z Sun, J Z Lairson, S K Streiffer, A F Marshall, K Yamamoto, S M Anlage, J C Bravman and T H Geballe, Physica C 171, 354 (1990)

    Article  ADS  Google Scholar 

  246. H C Yang, B D Yao and H E Horng, Supercond. Sci. Technol. 1, 160 (1988)

    Article  ADS  Google Scholar 

  247. S Orbach-Werbig, A Golubov, S Hensen, G Muller and H Piel, Physica C 235–240, 1823 (1994)

    Article  ADS  Google Scholar 

  248. P Bernstein, S Flament, C Dubuc, J Bok, X Q Zhang, J P Contour and F R Ladan, Physica C 235–240, 1839 (1994)

    Article  ADS  Google Scholar 

  249. A Hassini, A Pomar, C Moreno, A Ruyter, N Roma, T Puig and X Obradors, Physica C 460–462, 1357 (2007)

    Article  ADS  Google Scholar 

  250. N Kobayashi, H Iwasaki, S Terada, K Noto, A Tokiwa, M Kikuchi, Y Syono and Y Muto, Physica C 153–155, 1525 (1988)

    Article  ADS  Google Scholar 

  251. A Umezawa, G W Crabtree, K G Vandervoort, U Welp, W K Kwok and J Z Liu, Physica C 162–164, 733 (1989)

    Article  ADS  Google Scholar 

  252. A Schilling, R Jin, H R Ott and Th Wolf, Physica C 235–240, 2741 (1994)

    Article  ADS  Google Scholar 

  253. S I Vedeneev, Usp. Fiz. Nauk 182, 669 (2012)

    Article  Google Scholar 

  254. M B Salamon, in Physical Properties of High Temperature Superconductors I (Ed. D M Ginsberg, Mir, Moscow,1990)

  255. K A Müller, Z. Phys. B. – Condensed Matter 80, 193 (1990)

    Article  ADS  Google Scholar 

  256. H J Bornemann, D E Morris and H B Liu, Physica C 182, 132 (1991)

    Article  ADS  Google Scholar 

  257. M Chiao, R W Hill, C Lupien, L Taillefer, P Lambert, R Gagnon and P Fournier, Phys. Rev. B 62, 3554 (2000)

    Article  ADS  Google Scholar 

  258. Z A Xu, E Ahmed, Z W Zhu, J Q Shen and X Yao, Physica C 460–460, 833 (2007)

    Article  ADS  Google Scholar 

  259. Y Wang, L Li and N P Ong, Phys. Rev. B 73, 024510 (2006)

    Article  ADS  Google Scholar 

  260. G Bridoux, P Pedrazzini, F De la Cruz and G Nieva, Physica C 460–462, 841 (2007)

    Article  ADS  Google Scholar 

  261. H Kitano, T Ohashi, A Maeda and I Tsukada, Physica C 460–462, 904 (2007)

    Article  ADS  Google Scholar 

  262. H-H Wen, G M H Luo, H Yang, L Shan, C Ren, P Cheng, G Yan and L Fang, Phys. Rev. Lett. 103, 067002 (2009)

  263. I Iguchi, T Yamaguchi and A Sugimoto, Nature 412, 420 (2001)

    Article  ADS  Google Scholar 

  264. L Li, Y Wang, S Komiya, S Ono, Y Ando, G D Gu and N P Ong, Phys. Rev. B 81, 054510 (2010)

    Article  ADS  Google Scholar 

  265. S Dzhumanov, Superlattices and Microstructures 21, 363 (1997)

    Article  ADS  Google Scholar 

  266. M Yu Kagan and D V Efremov, Phys. Rev. B 65, 195103 (2002)

    Article  ADS  Google Scholar 

  267. M Leroux, V Mishra, J P C Ruff, H Claus, M P Smylie, C Opagiste, P Rodiere, A Kayani, G D Gu, J M Tranquada, W-K Kwok, Z Islam and U Welp, PNAS 116, 10961 (2019)

    Article  Google Scholar 

  268. J L Tholence, L Puech, A Sulpice, J J Capponi, B Souletie, C Chaillout, J J Prejean, M Alario-Franco, M Marezio, S deBrion, M Couach, O Monnereau, T Badeche, A M Ghorayeb, C Boulesteix, K Vad and B Keszei, Physica C 235–240, 1545 (1994)

  269. F Steglich, U Ahlheim, A Böhm, C D Bredl, R Caspary, C Geibel, A Grauel, R Helfrich, R Köhler, M Lang, A Mehner, R Modler, C Schank, C Wassilew, G Weber, W Assmus, N Sato and T Komatsubara, Physica C 185–189, 379–384 (1991)

  270. K Kanoda, K Akida, K Suzuki and T Takahashi, Phys. Rev. Lett. 65, 1271 (1990)

    Article  ADS  Google Scholar 

  271. A I Sokolov, Supercond.: Phys. Chem. Tech. 5, 1794 (1992)

  272. K Ichimura and K Nomura, J. Phys. Soc. Jpn. 75, 051012 (2006)

    Article  ADS  Google Scholar 

  273. Y-K Luo, P F S Rosa, E D Bauer and J D Thompson, Phys. Rev. B 93, 201102 (2016)

    Article  ADS  Google Scholar 

  274. Y Maeno, S Kittaka, T Nomura, S Yonezawa and K Ishida, J. Phys. Soc. Jpn. 81, 011009 (2012)

    Article  ADS  Google Scholar 

  275. J Jang, D G Ferguson, V Vakaryuk, R Budakian, S B Chung, P M Goldbart and Y Maeno, Science 331, 186 (2011)

    Article  ADS  Google Scholar 

  276. P Hakonen and O V Lounasmaa, Phys. Today 40(2), 70 (1987)

  277. N Nagamura and R Ikeda, Phys. Rev. B 98, 094524 (2018)

    Article  ADS  Google Scholar 

  278. Yu M Bunkov, A S Chen, D J Cousins and H Goodfrin, Phys. Rev. Lett. 85, 3456 (2000)

    Article  ADS  Google Scholar 

  279. Y Wang and P E Sokol, Phys. Rev. Lett. 72, 1040 (1994)

    Article  ADS  Google Scholar 

  280. E Timmerman, Contemp. Phys. 42, 1 (2001)

    Article  ADS  Google Scholar 

  281. A Paris-Mandoki, J Shearring, F Mancarella, T M Fromhold, A Trombettoni and P Krüger, Sci. Rep. 7, Art. No. 9070 (2017)

  282. J Wilks, The Properties of Liquid and Solid Helium (Claredon Press, Oxford, 1997)

    Google Scholar 

  283. R Feynman, Statistical Mechanics (Mir, Moscow, 1978)

    Google Scholar 

  284. N Wada, A Inoue, H Yano and K Torii, Phys. Rev. B 52, 1167 (1995)

  285. M K Zalalutdinov, V Kovacik, M Fukuda, T Igarashi and M Kubota, Czech. J. Phys. 46, Suppl. 39 (1996)

  286. S Tewaru, S Ds Sarma, C Nayak, C Zhang and P Zoller, Phys. Rev. Lett. 98, 010506 (2007)

  287. M M Sharma, P Sharma, N K Karn and V P S Awana, Supercond. Sci. Technol. 35, 083003 (2022)

    Article  ADS  Google Scholar 

  288. J Alicea, Rep. Prog. Phys. 75, 076501 (2012)

    Article  ADS  Google Scholar 

  289. S Lupi, M Capizzi, P Calvani, B Ruzicka, P Maselli, P Dore and A Paolone, Phys. Rev. B 57, 1248 (1998)

    Article  ADS  Google Scholar 

  290. K A Moler, J R Kirtley, D G Hinks, T W Li and M Xu, Science 279, 1193 (1998)

    Article  ADS  Google Scholar 

  291. J C Wynn, D A Bonn, B W Gardner, Y-J Lin, R Liang, W N Hardy, J R Kirtley and K A Moler, Phys. Rev. Lett. 87, 197002 (2001)

    Article  ADS  Google Scholar 

  292. A L Solovjov, L V Omelchenko, V B Stepanov, R V Vovk, H-U Habermeier, H Lochmajer, P Przyslupski and K Rogacki, Phys. Rev. B 94, 224505 (2016)

    Article  ADS  Google Scholar 

  293. J E Hirsch and F Marsiglio, Phys. Rev. B 103, 134505 (2021)

    Article  ADS  Google Scholar 

  294. F M Araujo-Moreira, P N Lisboa-Filho, A J C Lanfredi, W A Ortiz, S M Zanetti, E R Leite, A W Mombr, L Ghivelder, Y G Zhao and V Venkatesan, Physica C 341, 413 (2000)

    Article  ADS  Google Scholar 

  295. D D Gulamova, A V Karimov, J G Chigvinadze, S M Ashimov, O V Magradze, S Kh Bobokulov, Zh Sh Turdiev and Kh N Bakhronov, Zh. Techn. Fiz. 89, 583 (2019)

    Google Scholar 

  296. D D Gulamova, private communication (2022)

Download references

Acknowledgements

The author would like to thank E M Ibragimova, A Rahimov, A L Solovjov, P J Baimatov, M J Ermamatov, U T Kurbanov, Z S Khudayberdiev, E X Karimbaev and Z A Narzikulov for useful discussions. This work was supported by the Foundation of the Fundamental Research, Grant No. OT-\(\Phi \)2-15 and F-FA-2021-433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Dzhumanov.

Appendices

Appendices

Appendix A: Boltzmann transport equations for Fermi components of Cooper pairs and bosonic Cooper pairs

The Boltzmann transport equation for the excited Fermi components of Cooper pairs in the relaxation time approximation can be written as

$$\begin{aligned} f^0_C(k)-f_C(k)=\frac{\tau _\textrm{BCS}(k)}{\hbar }\vec {F} \frac{\partial f_C}{\partial {k}}, \end{aligned}$$
(A.1)

where \(f^0_C(k)\) is the equilibrium Fermi distribution function, \(\tau _\textrm{BCS}(k)\) is the relaxation time of the Fermi components of Cooper pairs in the BCS-like pseudogap regime, \(\vec {F}\) is a force acting on a charge carrier in the crystal.

We consider the conductivity of hole carriers in the presence of the electric field applied in the x-direction. Then we can write eq. (A1) as

$$\begin{aligned} f^0_C(k)-f_C(k)= & {} \frac{\tau _\textrm{BCS}(k)}{\hbar }\vec {F_x} \frac{\partial f_C(k)}{\partial k_x}\nonumber \\= & {} \frac{\tau _\textrm{BCS}(k)}{\hbar }\vec {F_x} \frac{\partial f_C(k)}{\partial E}\frac{\partial E}{\partial k_x}\nonumber \\= & {} \frac{\tau _\textrm{BCS}(k)}{\hbar }\vec {F_x}\hbar V_x \frac{\partial f_C(k)}{\partial E}, \end{aligned}$$
(A.2)

where \(E(k)=\sqrt{\xi ^2(k)+\Delta ^2_F}\), \(\xi (k)=\varepsilon (k)-\varepsilon _F\), \(\varepsilon (k)=\hbar ^2(k^2_x+k^2_y+k^2_z)/2m_p\), \(V_x=\frac{1}{\hbar }\frac{\partial E(k)}{\partial k_x}=v_x\frac{\xi }{E}\), \(v_x=\hbar k_x/m_p\).

The number of the Fermi components of Cooper pairs is determined from the relation

$$\begin{aligned} n^*_F=2\sum _k u_kf_C(k)=2\sum _k\frac{1}{2}\left( 1+\frac{\xi }{E}\right) f_C(k). \end{aligned}$$
(A.3)

Then the density of these Fermi quasiparticles is defined as

$$\begin{aligned} n^*_F=\frac{1}{(2\pi )^3}\int \left( 1+\frac{\xi }{E}\right) f_C(k)d^3k \end{aligned}$$
(A.4)

Using eqs (A.2) and (A.4) the current density in the x-direction can be defined as

$$\begin{aligned} J^*_x= & {} \frac{e}{(2\pi )^3}\int v_x\left( 1+\frac{\xi }{E}\right) f_C(k)d^3k \nonumber \\= & {} \frac{e}{(2\pi )^3}\int v_x\left( 1+\frac{\xi }{E}\right) f^0_C(k)d^3k-\frac{e}{(2\pi )^3}\nonumber \\{} & {} \times \int v^2_x\tau _\textrm{BCS}(k)F_x\frac{\xi }{E}\left( 1+\frac{\xi }{E}\right) \frac{\partial f_C(k)}{\partial E}d^3k, \nonumber \\ \end{aligned}$$
(A.5)

where \(\xi \) and E are even functions of k, while \(v_xf^0_C(k)\) is an odd function of \(v_x\). Since integration with respect to \(dk_x\) ranges from \(-\infty \) to \(+\infty \), the first term in eq. (A.5) becomes zero, and only the second term remains, resulting in (for \(F_x=+eE_x\))

$$\begin{aligned} J^*_x=-\frac{e^2E_x}{8\pi ^3}\int v^2_x\tau _\textrm{BCS}(k)\frac{\xi }{E}\left( 1+\frac{\xi }{E}\right) \frac{\partial f_C(k)}{\partial E}d^3k. \nonumber \\ \end{aligned}$$
(A.6)

Similarly, the current density of bosonic Cooper pairs in the x-direction is given by (for \(F_x=+2eE_x\))

$$\begin{aligned} J^B_x= & {} \frac{2e}{(2\pi )^3}\int v_x\left[ f^0_B(k)-\tau _B(k)v_xF_x\frac{\partial f_B}{\partial \varepsilon }\right] d^3K\nonumber \\= & {} -\frac{e^2E_x}{2\pi ^3}\int v^2_x\tau _B(k)\frac{\partial f_B}{\partial \varepsilon }d^3K, \end{aligned}$$
(A.7)

Appendix B: Possible analytical solutions of the integral equations in the theory of a 3D Bose superfluid for \(T=0\)

For the model potential (122), \(\Delta _B(\vec {k})\) will be approximated as

$$\begin{aligned} \Delta _B(\vec {k})= \left\{ \begin{array}{lll} \Delta _{B1} &{} \text {for} \ \ |\varepsilon (k)|,|\varepsilon (k')|\le \xi _{BA},\\ \Delta _{B2} &{} \text {for} \ \ \xi _{BA}<|\varepsilon (k)|,|\varepsilon (k')|\le \xi _{BR},\\ 0 &{} \text {for} \ \ \varepsilon (k) \text { or } \varepsilon (k')>\xi _{BR}. \end{array} \right. \end{aligned}$$
(B.1)

Then eqs (116) and (118) at \(T=0\) are reduced to the following equations:

$$\begin{aligned}{} & {} \Delta _{B1}=-D_B(V_{BR}-V_{BA})\Delta _{B1}I_A-V_{B1}\Delta _{B2}I_R,\nonumber \\{} & {} \Delta _{B2}=-V_{BR}\Delta _{B1}I_A-V_{BR}\Delta _{B2}I_R, \end{aligned}$$
(B.2)

and

$$\begin{aligned} \chi _{B1}=(V_{BR}-V_{BA})\rho _{B1}+V_{BR}\rho _{B2}, \end{aligned}$$
(B.3)

where

$$\begin{aligned}{} & {} I_A=D_B\int ^{\xi _{BA}}_{0}\frac{\sqrt{\varepsilon }d\varepsilon }{2\sqrt{(\varepsilon +\tilde{\mu }_B)^2-\Delta ^2_{B1}}}, \end{aligned}$$
(B.4)
$$\begin{aligned}{} & {} I_R=D_B\int ^{\xi _{BR}}_{\xi _{BA}}\frac{\sqrt{\varepsilon }d\varepsilon }{2\sqrt{(\varepsilon +\tilde{\mu }_B)^2-\Delta ^2_{B2}}}, \end{aligned}$$
(B.5)

and \(\rho _{B1}=\frac{1}{\Omega }\sum ^{k_A}_{k=0}n_B(\vec {k})\), \(\rho _{B2}=\frac{1}{\Omega }\sum ^{k_R}_{k=k_A}n_B(\vec {k})\), \(n_B(\vec {k})=[\exp (E_B(\vec {k})/k_BT)-1]^{-1}\), \(\xi _{BA}=\varepsilon (k_A)\), \(\xi _{BR}=\varepsilon (k_R)\).

For 3D Bose systems, \(D_B={m_B}^{3/2}/\sqrt{2}\pi ^2\hbar ^3\). From eq. (B.2), we obtain

$$\begin{aligned} \tilde{V}_BI_A=[V_{BA}-V_{BR}(1+V_{BR}I_R)^{-1}]I_A=1. \end{aligned}$$
(B.6)

At \(\xi _{BA}>>\tilde{\mu }_B\), \(\Delta _{B2}\), we obtain from eq. (B.5),

$$\begin{aligned} I_R\simeq D_B\int \limits _{\xi _{BA}}^{\xi _{BR}}\sqrt{\varepsilon }\frac{d\varepsilon }{2\varepsilon }=D_B\left[ \sqrt{\xi _{BR}}-\sqrt{\xi _{BA}}\right] \end{aligned}$$
(B.7)

and

$$\begin{aligned} I_R\simeq \frac{1}{2}\int ^{\xi _{BR}}_{\xi _{BA}} \frac{d\varepsilon }{\varepsilon }=\frac{D_B}{2}\ln \frac{\xi _{BR}}{\xi _{BA}} \end{aligned}$$
(B.8)

for 3D and 2D Bose systems, respectively.

We can assume that almost all Bose particles have energies smaller than \(\xi _{BA}\) and \(\rho _B\simeq \rho _{B1}\). Using eq. (117) the expression for \(\rho _B\) can be written as

$$\begin{aligned} 2\rho _B\simeq D_B\int \limits _0^{\xi _{BA}}\sqrt{\varepsilon } \left[ \frac{\varepsilon +\tilde{\mu }_B}{\sqrt{(\varepsilon +\tilde{\mu }_B)^2-\Delta _{B1}^2}} -1\right] d\varepsilon \nonumber \\ \end{aligned}$$
(B.9)

At \(\rho _{B2}<<\rho _{B1}\), the result of eq. (B.3) allows us to determine the renormalized chemical potential as \(\tilde{\mu }_B=-\mu _B+2\rho _B(V_{BR}-V_{BA})\). While eq. (B.4) determines the coherence parameter \(\Delta _B=\Delta _{B1}\). From eq. (B.6), it follows that the model interboson interaction potential defined by eq. (122) reduces to the following simple BCS-like potential:

$$\begin{aligned} V_B(\vec {k}-\vec {k'})=\left\{ \begin{array}{ll} -\tilde{V}_{B},\\ \ \ 0, \end{array} \ \ \begin{array}{ll} \quad |\xi (k)|, |\xi (k')|\leqslant \xi _{BA},\\ \quad \text {otherwise}\\ \end{array} \right. \nonumber \\ \end{aligned}$$
(B.10)

For a 3D Bose system, we obtain from eqs (B.4) and (B.9),

$$\begin{aligned} \frac{1}{D_B\tilde{V}_B}=\sqrt{\xi _{BA}+2\tilde{\mu }_B}-\sqrt{2\tilde{\mu }_B} \end{aligned}$$
(B.11)

and

$$\begin{aligned} \frac{3\rho _B}{D_B}= & {} \lim _{\xi _{BA}\rightarrow \infty } \sqrt{\xi _{BA}+2\tilde{\mu }_B}(\xi _{BA}-\tilde{\mu }_B)\nonumber \\{} & {} +\tilde{\mu }_B\sqrt{2\tilde{\mu }_B}-\xi _{BA}^{3/2} \simeq \tilde{\mu }_B\sqrt{2\tilde{\mu }_B}. \end{aligned}$$
(B.12)

Equation (B.11) reduces to the relation (123) and then the substitution of eq. (123) into eq. (B.12) gives the relation (124). Further, \(2\rho _B/D_B=2.612\sqrt{\pi }(k_BT_\textrm{BEC})^{3/2}\) [228] and eq. (125) follows from eq. (B.12). For \(E_B(0)=0\), eqs (119)–(121) can now be written as

$$\begin{aligned}{} & {} \Delta _B(\vec {k})=-V_B(\vec {k})\rho _{B0}\frac{\Delta _B(0)}{|\Delta _B(0)|} -\frac{1}{\Omega }\sum _{k'\ne 0}V_B (\vec {k}-\vec {k}')\nonumber \\{} & {} \qquad \qquad \times \frac{\Delta _B(\vec {k}')}{2E_B(\vec {k}')}(1+2n_B(\vec {k}')), \end{aligned}$$
(B.13)
$$\begin{aligned}{} & {} \rho _B=\rho _{B0}+\frac{1}{\Omega }\sum _{k\ne 0}n_B(\vec {k}), \end{aligned}$$
(B.14)
$$\begin{aligned}{} & {} \chi _B(\vec {k})=V_B(\vec {k})\rho _{B0}+\frac{1}{\Omega }\sum _{k'\ne 0}V_B(\vec {k}-\vec {k}')n_B(\vec {k}').\nonumber \\ \end{aligned}$$
(B.15)

Replacing the summation in eqs (B.14) and (B.15) by an integration and taking into account the approximation (B.10), we obtain

$$\begin{aligned}{} & {} 2(\rho _B-\rho _{B0})=D_B\int \limits _0^{\xi _{BA}}\sqrt{\varepsilon }\left[ \frac{\varepsilon +\tilde{\mu }_B}{\sqrt{\varepsilon ^2+2\tilde{\mu }_B}}-1\right] d\varepsilon , \nonumber \\ \end{aligned}$$
(B.16)
$$\begin{aligned}{} & {} \tilde{V}_B\rho _{B0}=\tilde{\mu }_B\left[ 1-\tilde{V}_BD_B\int \limits _0^{\xi _{BA}}\frac{\sqrt{\varepsilon }d\varepsilon }{2\sqrt{\varepsilon ^2+2\tilde{\mu }_B\varepsilon }}\right] .\nonumber \\ \end{aligned}$$
(B.17)

Equations (127) and (128) follow accordingly from eqs (B.16) and (B.17). In the case of 2D Bose systems, \(D_B=m_B/2\pi \hbar ^2\) and the multiplier \(\sqrt{\varepsilon }\) under the integrals in eqs (B.16) and (B.17) will be absent.

At \(\gamma _B<\gamma ^*_B\), evaluating the integrals in eq. (131), we have

$$\begin{aligned}{} & {} W_0=D_B\Omega \Big \{\frac{2}{5}[(\xi _A+2\Delta _B)^{5/2})-\xi ^{5/2}_A]\nonumber \\{} & {} \quad +\frac{4}{15}(2\Delta _B)^{5/2} -\frac{2\Delta _B}{3}\xi ^{3/2}_A-\frac{4\Delta _B}{3}(\xi _A+2\Delta _B)^{3/2}\nonumber \\{} & {} \quad -\Delta ^2_B[(\xi _A+2\Delta _B)^{1/2}-(2\Delta _B)^{1/2}]\Big \}. \end{aligned}$$
(B.18)

In order to simplify eq. (B.18) further, we can expand the brackets \((\xi _{BA}+2\Delta _B)^{5/2}\), \((\xi _{BA}+2\Delta _B)^{3/2}\) and \((\xi _{BA}+2\Delta _B)^{1/2}\) in this equation in powers of \(2\Delta _B/\xi _{BA}\) as

$$\begin{aligned}{} & {} (\xi _{BA}+2\Delta _B)^{5/2}=\xi ^{5/2}_{BA}\left( 1+\frac{2\Delta _B}{\xi _{BA}}\right) ^{5/2}\nonumber \\{} & {} \quad \simeq \xi ^{5/2}_{BA}\left\{ 1+\frac{5\Delta _B}{\xi _{BA}}+\frac{15}{2}\left( \frac{\Delta _B}{\xi _{BA}}\right) ^2\right. \nonumber \\{} & {} \quad \left. +\frac{5}{2}\left( \frac{\Delta _B}{\xi _{BA}}\right) ^3\cdots \right\} , \end{aligned}$$
(B.19)
$$\begin{aligned}{} & {} (\xi _{BA}+2\Delta _B)^{3/2}=\xi ^{3/2}_{BA}\left( 1+\frac{2\Delta _B}{\xi _{BA}}\right) ^{3/2}\nonumber \\{} & {} \quad \simeq \xi ^{3/2}_{BA}\left\{ 1+\frac{3\Delta _B}{\xi _{BA}}+\frac{3}{2}\left( \frac{\Delta _B}{\xi _{BA}}\right) ^2-\cdots \right\} , \end{aligned}$$
(B.20)
$$\begin{aligned}{} & {} (\xi _{BA}+2\Delta _B)^{1/2}=\xi ^{1/2}_{BA}\left( 1+\frac{2\Delta _B}{\xi _{BA}}\right) ^{1/2}\nonumber \\{} & {} \quad \simeq \xi ^{1/2}_{BA}\left\{ 1+\frac{\Delta _B}{\xi _{BA}}-\cdots \right\} . \end{aligned}$$
(B.21)

Substituting eqs (B.19), (B.20) and (B.21) into eq. (B.18), we find

$$\begin{aligned} W_0= & {} D_B\Omega \Bigg \{\frac{2}{5}\Bigg [\xi ^{5/2}_{BA}+5\Delta _B\xi ^{3/2}_{BA} +\frac{15}{2}\Delta ^2_B\xi ^{1/2}_{BA}\nonumber \\{} & {} +\frac{5}{2}\Delta ^3_B/\xi ^{1/2}_{BA}-\xi ^{5/2}_{BA}\Bigg ] -\frac{4}{15}(2\Delta _B)^{5/2}-\frac{2\Delta _B}{3}\xi ^{3/2}_{BA}\nonumber \\{} & {} -\frac{4\Delta _B}{3}\Bigg [\xi ^{3/2}_{BA}+3\Delta _B\xi ^{1/2}_{BA}+\frac{3}{2} \Delta ^2_B/\xi ^{1/2}_{BA}\Bigg ]\nonumber \\{} & {} -\Delta ^2_B\xi ^{1/2}_{BA}-\Delta ^3_B/\xi ^{1/2}_{BA}+\Delta ^2_B(2\Delta _B)^{1/2}\Bigg \}\nonumber \\= & {} D_B\Omega \Bigg \{2\Delta _B\xi ^{3/2}_{BA}-\frac{2\Delta _B}{3}\xi ^{3/2}_{BA} -\frac{4\Delta _B}{3}\xi ^{3/2}_{BA}\nonumber \\ {}{} & {} +3\Delta ^2_B\xi ^{1/2}_{BA}- 4\Delta ^2_B\xi ^{1/2}_{BA}+\Delta ^3_B/\xi ^{1/2}_{BA}-2\Delta ^3_B/\xi ^{1/2}_{BA}\nonumber \\{} & {} -\Delta ^2_B\xi ^{1/2}_{BA}-\Delta ^3_B/\xi ^{1/2}_{BA}- \frac{4}{15}(2\Delta _B)^{5/2}\nonumber \\{} & {} +\Delta ^2_B(2\Delta _B)^{1/2}\Bigg \}\nonumber \\= & {} D_B\Omega \Bigg \{3\Delta ^2_B\xi ^{1/2}_{BA}-5\Delta ^2_B\xi ^{1/2}_{BA} \nonumber \\{} & {} -2\Delta ^3_B/\xi ^{1/2}_{BA}-\frac{\sqrt{2}}{15}\Delta ^{5/2}_B\Bigg \}=D_B\Omega \Delta ^2_B\xi ^{1/2}_{BA}\nonumber \\{} & {} \times \Bigg \{-2-2\frac{\Delta _B}{\xi _{BA}}-\frac{\sqrt{2}}{15}\Big (\frac{\Delta _B}{\xi _{BA}}\Big )^{1/2}\Bigg \}. \end{aligned}$$
(B.22)

At \(\Delta _B/\xi _{BA}<<1\), we have

$$\begin{aligned} W_0\simeq -2D_B\Delta ^2_B\xi ^{1/2}_{BA}\Omega . \end{aligned}$$
(B.23)

Appendix C: Possible analytical solutions of the integral equations in the theory of a 3D Bose superfluid for the temperature range \(0<T\le T_c\)

Using the model potential (122), we can write eqs (116) and (117) as

$$\begin{aligned}{} & {} \frac{2\rho _B}{D_B}=\int \limits _0^{\infty }\sqrt{\varepsilon }\left[ \frac{(\varepsilon +\tilde{\mu }_B)}{\sqrt{(\varepsilon +\tilde{\mu }_B)^2-\Delta _B^2}}-1\right] d\varepsilon \nonumber \\{} & {} +2\int \limits _0^{\infty }\frac{\sqrt{\varepsilon }(\varepsilon +\tilde{\mu }_B)d\varepsilon }{\sqrt{(\varepsilon +\tilde{\mu }_B)^2-\Delta _B^2}\left[ \exp (\frac{\sqrt{(\varepsilon +\tilde{\mu }_B)^2-\Delta _B^2}}{k_BT})-1\right] }, \nonumber \\ \end{aligned}$$
(C.1)
$$\begin{aligned}{} & {} \frac{2}{D_B\tilde{V}_B}=\int \limits _0^{\xi _{BA}}\frac{\sqrt{\varepsilon }d\varepsilon }{\sqrt{(\varepsilon +\tilde{\mu }_B)^2-\Delta _B^2}}\nonumber \\{} & {} +2\int \limits _0^{\xi _{BA}}\frac{\sqrt{\varepsilon }d\varepsilon }{\sqrt{(\varepsilon +\tilde{\mu }_B)^2-\Delta _B^2} \left[ \exp (\frac{\sqrt{(\varepsilon +\tilde{\mu }_B)^2-\Delta _B^2}}{k_BT})-1\right] }. \nonumber \\ \end{aligned}$$
(C.2)

According to eq. (B.12) the first integral in eq. (C.1) at \(\tilde{\mu }_B=\Delta _B\) is equal to \(2\tilde{\mu }_B\sqrt{2\tilde{\mu }_B}/3\). From eq. (B.11), it follows that the first integral in eq. (C.2) at \(\tilde{\mu }_B=\Delta _B\) is equal to \(2[\sqrt{\xi _{BA}+2\tilde{\mu }_B}-\sqrt{2\tilde{\mu }_B}]\). The main contributions to the latter integrals in eqs (C.1) and (C.2) come from small values of \(\varepsilon \), so that for \(T<<T_c\) and \(\tilde{\mu }_B=\Delta _B\) the latter integrals in eqs (C.1) and (C.2) can be evaluated approximately as

$$\begin{aligned}{} & {} 2\int \limits _0^{\infty } \frac{\sqrt{\varepsilon }(\varepsilon +\tilde{\mu }_B)d\varepsilon }{\sqrt{\varepsilon ^2+2\varepsilon \tilde{\mu }_B} \Big [\exp \Big [\sqrt{\frac{\varepsilon ^2+2\varepsilon \tilde{\mu }_B}{k_BT}}\Big ]-1\Big ]}\nonumber \\{} & {} \quad \approx \sqrt{2\tilde{\mu }_B}\int ^{\infty }_{0}\frac{d\varepsilon }{\exp \Big [\frac{\sqrt{2\varepsilon \tilde{\mu }_B}}{k_BT}\Big ]-1}\nonumber \\{} & {} \quad =\frac{(\pi k_BT)^2}{3\sqrt{2\tilde{\mu }_B}}, \end{aligned}$$
(C.3)
$$\begin{aligned}{} & {} 2\int \limits _0^{\infty }\frac{\sqrt{\varepsilon }d\varepsilon }{\sqrt{\varepsilon ^2+2\varepsilon \tilde{\mu }_B}\Big [\exp \Big [\frac{\sqrt{\varepsilon ^2+2\varepsilon \tilde{\mu }_B}}{k_BT}\Big ]-1\Big ]}\nonumber \\{} & {} \quad \approx \frac{2}{\sqrt{2\tilde{\mu }_B}}\int ^{\infty }_{0}\frac{d\varepsilon }{\exp \Big [\frac{\sqrt{2\varepsilon \tilde{\mu }_B}}{k_BT}\Big ]-1}\nonumber \\{} & {} \quad =\frac{(\pi k_BT)^2}{3\sqrt{2}\tilde{\mu }_B^{3/2}}.\nonumber \\ \end{aligned}$$
(C.4)

At \(\tilde{\mu }_B=\Delta _B\), according to eqs (B.13) and (B.14), the term \(2\rho _{B0}/D_B\) should be present in eq. (C.1), while the term \(2\rho _{B0}/\tilde{\mu }_BD_B\) would be present in eq. (C.2). Therefore, at \(T<T_c^*<<T_c\), eqs (C.1) and (C.2) can be written as

$$\begin{aligned}{} & {} \frac{2\rho _B}{D_B}\simeq \frac{2\rho _{B0}(T)}{D_B}+\frac{(2\tilde{\mu }_B)^{3/2}}{3}+\frac{(\pi k_BT)^2}{3\sqrt{2\tilde{\mu }_B}}, \end{aligned}$$
(C.5)
$$\begin{aligned}{} & {} \frac{2\tilde{\mu }_B}{D_B\tilde{V}_B}\simeq \frac{2\rho _{B0}(T)}{D_B}+2\tilde{\mu }_B\nonumber \\{} & {} \qquad \qquad \quad \times \Big [\sqrt{\xi _{BA}+2\tilde{\mu }_B}-\sqrt{2\tilde{\mu }_B}\Big ]+\frac{(\pi k_BT)^2}{3\sqrt{2\tilde{\mu }_B}},\nonumber \\ \end{aligned}$$
(C.6)

from which we obtain eqs (134) and (135).

The first integrals in eqs (C.1) and (C.2) at \(\Delta _g\ne 0\) (or \(\rho _{B0}=0\)) and \(\tilde{\mu }_B>>\Delta _B\) can be evaluated approximately using the Taylor expansion

$$\begin{aligned} \frac{1}{\sqrt{(\varepsilon +\tilde{\mu }_B)^2-\Delta _B}}\simeq \frac{1}{\varepsilon +\tilde{\mu }_B}\left[ 1+\frac{\Delta ^2_B}{2(\varepsilon +\tilde{\mu }_B)^2}\right] . \nonumber \\ \end{aligned}$$
(C.7)

Performing the integration and using also the expansion

$$\begin{aligned} \arctan \sqrt{\frac{\xi _{BA}}{\tilde{\mu }_B}}\simeq \frac{\pi }{2}-\sqrt{\frac{\tilde{\mu }_B}{{\xi _{BA}}}} +\frac{1}{3}\left( \frac{\tilde{\mu }_B}{\xi _{BA}}\right) ^{3/2}-\cdots , \nonumber \\ \end{aligned}$$
(C.8)

we obtain the following results for the first integrals in equations (C.1) and (C.2):

$$\begin{aligned} \frac{\pi \Delta _B^2}{4\sqrt{\tilde{\mu }_B}}\ \ \ \,\text {and}\, \ \ \ \ 2\sqrt{\xi _{BA}}\left[ 1+\frac{3\pi }{32}\left( \frac{\Delta _B}{\tilde{\mu }_B}\right) ^2 \sqrt{\frac{\tilde{\mu }_B}{\xi _{AB}}}\right] . \nonumber \\ \end{aligned}$$
(C.9)

The latter integrals in eqs (C.1) and (C.2) can be evaluated near \(T_c\) making the substitution \(t=\sqrt{(\varepsilon /\tilde{\mu }_B)^2+2\varepsilon /\tilde{\mu }_B}\), \(a^2_1t^2+a^2_2=[(\varepsilon +\tilde{\mu }_B)^2-\Delta ^2_B]/(k_BT)^2\) [228], where \(a_1=\tilde{\mu }_B/k_BT\), \(a_2=\sqrt{\tilde{\mu }_B^2-\Delta ^2_B}/k_BT\). The second integral in eq. (C.1) can be written in the form

$$\begin{aligned} I_2= & {} \tilde{\mu }_B^{3/2}\nonumber \\{} & {} \times \int ^\infty _0\frac{\sqrt{\sqrt{t^2+1}-1}t dt}{\sqrt{t^2+(\frac{a_2}{a_1})^2}\Big [\exp (a_1\sqrt{t^2+(\frac{a_2}{a_1})^2})-1\Big ]}, \nonumber \\ \end{aligned}$$
(C.10)

where \(a_1<<1\), \(a_2{<<}1\), and \(\Delta _B{<<}\tilde{\mu }_B\) near \(T_c\).

This integral can be evaluated using the method presented in [212] and the final result has the following form [228]

$$\begin{aligned} I_2\simeq & {} \frac{\sqrt{\pi }}{2}(k_BT)^{3/2} \Bigg [2.612-\sqrt{2\pi }\sqrt{\frac{\tilde{\mu }_B}{k_BT}+\frac{\Delta _g}{k_BT}}\nonumber \\{} & {} +1.46\frac{\tilde{\mu }_B}{k_BT}\cdots \Bigg ]\nonumber \\{} & {} =\frac{\sqrt{\pi }}{2}(k_BT)^{3/2}\nonumber \\{} & {} \Bigg [2.612-\sqrt{2\pi }\sqrt{\frac{\tilde{\mu }_B}{k_BT}+\frac{\tilde{\mu }_B}{k_BT}\Big (1-\frac{\Delta ^2_B}{2\tilde{\mu }^2_B}\Big )}\nonumber \\{} & {} +1.46\frac{\tilde{\mu }_B}{k_BT}\Bigg ]. \end{aligned}$$
(C.11)

The second integral \(I'_2\) in eq. (C.2) is also evaluated in the same manner as follows:

$$\begin{aligned}{} & {} I_2^{'}\simeq \frac{\pi k_BT}{\sqrt{2\tilde{\mu }_B}}\Bigg [\sqrt{\frac{\tilde{\mu }_B}{\tilde{\mu }_B+\Delta _g}}-1.46\sqrt{\frac{2\tilde{\mu }_B}{\pi k_BT}}+\cdots \Bigg ]\nonumber \\{} & {} \quad =\frac{\pi k_BT}{2\sqrt{\tilde{\mu }_B}}\Bigg [\sqrt{\frac{1}{1-\Delta ^2_B/4\tilde{\mu }_B^2}} -1.46\sqrt{2}\sqrt{\frac{2\tilde{\mu }_B}{\pi k_BT}}\Bigg ].\nonumber \\ \end{aligned}$$
(C.12)

By expanding the expressions \(\sqrt{1-\Delta ^2_B/4\tilde{\mu }_B^2}\) and \(\sqrt{1/(1-\Delta ^2_B/4\tilde{\mu }_B^2)}\) in powers of \(\Delta _B/4\tilde{\mu }_B\) and replacing \(1.46\sqrt{2}\) by 2, we obtain from eqs (C.1), (C.2), (C.9), (C.11) and (C.12) (with an accuracy to \(\sim \tilde{\mu }_B(T)\))

$$\begin{aligned}{} & {} \frac{1}{D_B\tilde{V}_B}\simeq \sqrt{\xi _{BA}}\left[ 1+\frac{3\pi }{32} \Big (\frac{\Delta _B}{\tilde{\mu }_B}\Big )^2\sqrt{\frac{\tilde{\mu }_B}{\xi _{BA}}}\right] \nonumber \\{} & {} \qquad \qquad +\frac{\pi k_BT}{2\sqrt{\tilde{\mu }_B}}\left[ \Big (1+\frac{\Delta ^2_B}{8\tilde{\mu }_B^2}\Big )-2\sqrt{\frac{2\tilde{\mu }_B}{\pi k_BT}}\right] , \end{aligned}$$
(C.13)
$$\begin{aligned}{} & {} \frac{2\rho _B}{D_B}=2.612\sqrt{\pi }(k_BT_{BEC})^{3/2}\nonumber \\{} & {} \qquad \quad \simeq \frac{\pi \Delta ^2_B}{4\sqrt{\tilde{\mu }_B}} +\sqrt{\pi }(k_BT)^{3/2}\nonumber \\{} & {} \qquad \qquad \times \left[ 2.612-2\sqrt{\frac{\pi \tilde{\mu }_B}{k_BT}}\left( 1-\frac{\Delta ^2_B}{8\tilde{\mu }^2_B}\right) \right] . \end{aligned}$$
(C.14)

For \(k_BT/\xi _{BA}\sim 1/2\pi \), the relation (138) follows from (C.13). After some transformations in eq. (C.14), we have

$$\begin{aligned}{} & {} \sqrt{\pi }(k_BT_\textrm{BEC})^{3/2}\nonumber \\{} & {} =\frac{\sqrt{\pi }(k_BT)^{3/2}}{2.612}\Bigg [\frac{\sqrt{\pi }}{4}\Bigg (\frac{\Delta _B}{\tilde{\mu }_B}\Bigg )^2\Bigg (\frac{\tilde{\mu }_B}{k_BT}\Bigg )^{3/2}\nonumber \\{} & {} \qquad +2.612-2\sqrt{\frac{\pi \tilde{\mu }_B}{k_BT}}\Bigg (1-\frac{\Delta ^2_B}{8\tilde{\mu }^2_B}\Bigg )\Bigg ]. \end{aligned}$$
(C.15)

Equation (137) follows from eq. (C.15). In order to determine the temperature dependencies of \(\tilde{\mu }_B\) and \(\Delta _B\) near \(T_c\), eqs (137) and (138) can be written as

$$\begin{aligned}{} & {} \sqrt{\pi }(k_BT_c)^{3/2}\left[ 2.612-2\sqrt{\frac{\pi \tilde{\mu }_B(T_c)}{k_BT_c}}\right] \nonumber \\{} & {} \quad \simeq \sqrt{\pi }(k_BT)^{3/2}\nonumber \\{} & {} \quad \times \left[ 2.612 -2\sqrt{\frac{\pi \tilde{\mu }_B(T)}{k_BT}}\Big (1-\frac{\Delta ^2_B(T)}{8\tilde{\mu }_B^2(T)}\Big )\right] , \end{aligned}$$
(C.16)
$$\begin{aligned}{} & {} \frac{\pi k_BT_c}{2}\sqrt{\frac{\xi _{BA}}{\tilde{\mu }_B(T_c)}} \nonumber \\{} & {} \quad \simeq \frac{\pi k_BT}{2}\sqrt{\frac{\xi _{BA}}{\tilde{\mu }_B(T)}}\left( 1+\frac{\Delta ^2_B(T)}{8\tilde{\mu }_B^2(T)}\right) . \end{aligned}$$
(C.17)

The quantities \(\tilde{\mu }_B(T)\) and \(\Delta _B(T)\) near \(T_c\) can be determined by eliminating \(\Delta ^2_B/8\tilde{\mu }^2_B\) from these equations. Making after that some algebraic transformations, we obtain

$$\begin{aligned}{} & {} \frac{-1.306\sqrt{k_B}}{\sqrt{\pi \tilde{\mu }_B(T)}}\left( \frac{T_c^{3/2}-T^{3/2}}{T}\right) +\sqrt{\frac{\tilde{\mu }_B(T_c)}{\tilde{\mu }_B(T)}}\frac{T_c}{T} \\{} & {} \quad =1-\frac{\Delta ^2_B(T)}{8\tilde{\mu }^2_B(T)}, \sqrt{\frac{\tilde{\mu }_B(T)}{\tilde{\mu }_B(T_c)}}\frac{T_c}{T}=1+\frac{\Delta ^2_B(T)}{8\tilde{\mu }^2_B(T)}. \end{aligned}$$

Combining now these equations, we have

$$\begin{aligned}{} & {} \sqrt{\frac{\tilde{\mu }_B(T)}{\tilde{\mu }_B(T_c)}}+\sqrt{\frac{\tilde{\mu }_B(T_c)}{\tilde{\mu }_B(T)}}\nonumber \\{} & {} \quad \times \Bigg [1-\frac{1.306\sqrt{k_B}}{\sqrt{\pi \tilde{\mu }_B(T_c)}}\left( \frac{T_c^{3/2}-T^{3/2}}{T_c}\right) \Bigg ] \nonumber \\{} & {} \quad \quad -2\frac{T}{T_c}=0. \end{aligned}$$
(C.18)

Now this equation has the solution

$$\begin{aligned}{} & {} \sqrt{\frac{\tilde{\mu }_B(T)}{\tilde{\mu }_B(T_c)}}=\frac{T}{T_c} \\{} & {} \quad +\sqrt{\left( \frac{T}{T_c}\right) ^2-1+\frac{1.306\sqrt{k_B}}{\sqrt{\pi \tilde{\mu }_B(T_c)}}\left( \frac{T_c^{3/2}-T^{3/2}}{T_c}\right) }. \end{aligned}$$

Next, taking into account that near \(T_c\),

$$\begin{aligned}{} & {} \frac{T_c^{3/2}-T^{3/2}}{T_c} \simeq \frac{T^3_c-T^3}{2T_c^{5/2}}\\{} & {} \quad =\frac{(T_c-T)(T^2_c+T_cT+T^2)}{2T^{5/2}_c} =\frac{3T^2_c(T_c-T)}{2T_c^{3/2}}, \end{aligned}$$

we obtain

$$\begin{aligned} \sqrt{\frac{\tilde{\mu }_B(T)}{\tilde{\mu }_B(T_c)}}=\frac{T}{T_c}+\sqrt{\left[ \frac{3.918}{2\sqrt{\pi }}\sqrt{\frac{k_BT_c}{\tilde{\mu }_B}}-2\right] \frac{(T_c-T)}{T_c}}. \end{aligned}$$

After combining this equation with eq. (138) follows approximately eq. (141) at \(k_BT_c/\tilde{\mu }_B(T_c)>>1\). From eqs (C.17) and (141), we obtain eq. (142). Assuming that \(\tilde{\mu _B}(T)/k_BT^*_c<<1\), we examine the behaviors of \(\tilde{\mu _B}(T)\) (or \(\Delta _B(T)\)) and \(n_{B0}(T)\) near the characteristic temperature \(T^*_c<T_c\). Replacing the summation in eqs (B.13)–(B.15) by an integration and using eqs (C.11) and (C.12) at \(\Delta _g=0\), we obtain following equations for determining \(\tilde{\mu _B}(T)\) and \(\rho _{B0}(T)\) near \(T^*_c\):

$$\begin{aligned}{} & {} \frac{2(\rho _B-\rho _{B0}) }{D_B}\simeq \frac{2\tilde{\mu }_B^{3/2}}{3}+\sqrt{\pi }(k_BT)^{3/2}\nonumber \\{} & {} \qquad \times \left[ 2.612-\sqrt{\frac{2\pi \tilde{\mu }_B}{k_BT}}+1.46\frac{\tilde{\mu }_B}{k_BT}\right] , \end{aligned}$$
(C.19)
$$\begin{aligned}{} & {} \frac{1}{\gamma _B} \simeq \frac{\rho _{B0}}{D_B\tilde{\mu }_B(\xi _{BA})^{1/2}}+\sqrt{1+\frac{2\tilde{\mu }_B}{\xi _{BA}}}-\sqrt{\frac{2\tilde{\mu }_B}{\xi _{BA}}} \nonumber \\{} & {} \qquad \quad +\frac{\pi k_BT}{\sqrt{2\tilde{\mu }_B\xi _{BA}}}\left[ 1-1.46\sqrt{\frac{2\tilde{\mu }_B}{\pi k_BT}}\right] . \end{aligned}$$
(C.20)

At \(T=T_c^*\) and \(\rho _{B0}=0\) (which corresponds to a complete depletion of the single particle condensate), eqs (C.19) and (C.20) at \(\tilde{\mu }_B/k_BT_c^*<<1\) can be written as

$$\begin{aligned} \frac{2\rho _B}{D_B}\simeq & {} \sqrt{\pi }(k_BT^*_c)^{3/2}\nonumber \\{} & {} \times \left[ 2.612-\sqrt{\frac{2\pi \tilde{\mu }_B}{k_BT^*_c}}+1.46\frac{\tilde{\mu }_B}{k_BT^*_c}\right] \end{aligned}$$
(C.21)

and

$$\begin{aligned} \frac{1}{\gamma _B}\simeq \frac{\pi k_BT^*_c}{\sqrt{2\tilde{\mu }_B\xi _{BA}}}. \end{aligned}$$
(C.22)

At \(T \lesssim T_c^*\), eqs (C.19) and (C.20) become

$$\begin{aligned}{} & {} 2.612\sqrt{\pi }(k_BT^*_c)^{3/2}-\pi k_BT^*_c\sqrt{2\tilde{\mu }_B(T^*_c)}\nonumber \\{} & {} \quad =\frac{2\rho _{B0}(T)}{D_B} +2.612\sqrt{\pi }(k_BT)^{3/2}\nonumber \\{} & {} \qquad - \pi k_BT\sqrt{2\tilde{\mu }_B(T)} \end{aligned}$$
(C.23)

and

$$\begin{aligned}{} & {} \frac{\pi k_BT^*_c}{\sqrt{2\tilde{\mu }_B(T^*_c)\xi _{BA}}}\nonumber \\{} & {} \quad =\frac{\rho _{B0}(T)}{D_B\tilde{\mu }_B(T)\sqrt{\xi _{BA}}} +\frac{\pi k_BT}{\sqrt{2\tilde{\mu }_B(T)\xi _{BA}}}. \end{aligned}$$
(C.24)

Eliminating \(\rho _{B0}(T)\) from these equations (i.e., after substituting \(\rho _{B0}(T)\) from eq. (C.24) into eq. (C.23)) and making some algebraic transformations, we obtain the equation for \(\tilde{\mu }_B(T)\), which is similar to eq. (C.18). The solution of this equation near \(T^*_c\) leads to a simple expression (143). Then, substituting \(\tilde{\mu }_B(T)/\tilde{\mu }_B(T^*_c)\) from eq. (143) into eq. (C.23), we obtain the relation (144).

Appendix D: Calculation of the superfluid parameters of a 2D Bose-liquid for the temperature range \(0< T \le T_c\)

We now calculate the superfluid parameters of a 2D Bose-liquid. For a 2D interacting Bose system, eq. (116) after replacing the sum by the integral and making the substitution \(y=\sqrt{(\varepsilon +\tilde{\mu }_B)^2-\Delta _B^2}/2k_BT\) takes the following form:

$$\begin{aligned} \frac{2}{\gamma _B}=\int \limits _{y_1}^{y_2}\frac{\coth y~dy}{\sqrt{y^2+(\Delta _B^*)^2}}, \end{aligned}$$
(D.1)

where \(y_1=\Delta _{g}/2k_BT\), \(y_2=\sqrt{(\xi _{BA}+\tilde{\mu }_B)^2-\Delta _B^2}/2k_BT\), \(\Delta _B^*=\Delta _B/2k_BT\). In order to evaluate the integral in eq. (D.1) in the intervals \(y_1<y<1\) and \(1<y<y_2\), one can take accordingly \(\coth y\approx 1/y\) and \(\approx 1\). Then, after performing the integration in eq. (D.1), we obtain

$$\begin{aligned} \frac{2}{\gamma _B}\simeq & {} \ln \Bigg \{\Bigg [\frac{y_1(\Delta _B^*+\sqrt{1+(\Delta ^*_B)^2})}{\Delta _B^*+\sqrt{y^2_1+(\Delta _B^*)^2}}\Bigg ]^{-1/\Delta _B^*}\nonumber \\{} & {} \times \Bigg [\frac{y_2+\sqrt{y^2_2+(\Delta _B^*)^2}}{1+\sqrt{1+(\Delta _B^*)^2}}\Bigg ]\Bigg \}. \end{aligned}$$
(D.2)

It is clear that at \(T{<<}T_c\), \(\Delta ^*_B>>1\), \(y_2>>\Delta _B^*\) and \(\Delta _B^*>>y_1\). Taking into account that \(\ln y_1\) is negligible, we can write eq. (D.2) in the form

$$\begin{aligned} \frac{2}{\gamma _B}\simeq \left( \frac{2y_2}{1+\Delta _B^*}\right) . \end{aligned}$$
(D.3)

This expression after some algebraic transformations reduces to eq. (156). At temperatures close to \(T_c\), \(\Delta _B^*{<<}1\). We then obtain from eq. (D.2) (with an accuracy to \(\sim (\Delta _B^*)^2\))

$$\begin{aligned} \frac{2}{\gamma _B}\simeq -\frac{1}{\Delta _B^*}\ln \left| \frac{y_1(1+\Delta _B^*)}{y_1+\Delta _B^*}\right| +\ln y_2. \end{aligned}$$
(D.4)

Assuming that \(y_2^{\Delta _B^*}\simeq 1\) and \(\Delta _B^*/\gamma _B<<1\), we obtain from eq. (D.4)

$$\begin{aligned} \frac{1+\Delta _B^*/y_1}{1+\Delta _B^*}\simeq \exp \left( \frac{2\Delta _B^*}{\gamma _B}\right) \simeq 1 +\frac{2\Delta _B^*}{\gamma _B}+\cdots , \end{aligned}$$

which reduces to

$$\begin{aligned} \Delta _B(T)=\gamma _Bk_B T\left[ \frac{2k_BT}{\Delta _g(T)}-\frac{\gamma _B+2}{\gamma _B}\right] . \end{aligned}$$
(D.5)

One can assume that \(\Delta _g(T)\) varies near \(T_c\) as \(\sim \alpha _0(2k_BT)^q\), where \(\alpha _0\) is determined at \(T=T_c\) from the condition \(\Delta _B(T_c)=0\)), q is variable parameter. Thus, in a 2D Bose superfluid \(\Delta _B(T)\) and \(\tilde{\mu }_B(T)\) can be determined accordingly from eqs (157) and (158).

For 2D Bose systems, the multiplier \(\sqrt{\varepsilon }\) under the integral in eq. (171) will be absent. In order to estimate such an integral at \(\Delta _g<2k_BT\), we make the substitution \(x=E_B(\varepsilon )/2k_BT\). Then, taking into account that the function \(\sinh x\) is close to x for \(x<1\) and this function close to \((1/2\exp (x))\) for \(x>1\), we obtain the following expression for the specific heat of a 2D Bose superfluid:

$$\begin{aligned} C_v(T)\simeq & {} 4\Omega D_Bk_B^2T\Bigg \{\int \limits _{y_1}^1\frac{x dx}{\sqrt{x^2+(\Delta ^*_B)^2}}\nonumber \\{} & {} + 4\int \limits _1^\infty \frac{x^3\exp (-2x)dx}{\sqrt{x^2+(\Delta ^*_B)^2}}\Bigg \}. \end{aligned}$$
(D.6)

At low temperatures, \(\Delta ^*_B>>1\), so that the expression \(\sqrt{x^2+(\Delta ^*_B)^2}\) in the integrands can be replaced by \(\Delta ^*_B\). Then, calculating the integrals in eq. (D.6) with this approximation, we obtain eq. (175).

Appendix E: Calculation of the characteristic temperature \(T_0^*\) in a 2D Bose-liquid

In the case of a 2D Bose-liquid, the expressions for \(\tilde{\varepsilon }_B(k)\) and \(\rho _B\) presented in §7.1 and Appendix B after replacing the summation by an integration can be written as

$$\begin{aligned} \tilde{\varepsilon }_B(k)= & {} \varepsilon (k)-\mu _B+V_B(0)\rho _B\nonumber \\{} & {} +\int \limits _0^\infty dk'{k}'V_B(\vec {k}-\vec {k}')\frac{1}{\exp [\tilde{\varepsilon }_B(k')/k_BT]-1}\nonumber \\ \end{aligned}$$
(E.1)

and

$$\begin{aligned} \rho _B=\frac{1}{2\pi }\int \limits _0^\infty dk'{k}'\frac{1}{\exp [\tilde{\varepsilon }_B(k')/k_BT]-1}. \end{aligned}$$
(E.2)

Here

$$\begin{aligned} V_B(\vec {k}-\vec {k}')&=\frac{1}{{2(2\pi )}^2}\int _0^{2\pi }d\psi V_B[(k^2+(k')^2\\&\quad -2kk'\cos \psi )^{1/2}]. \end{aligned}$$

In eq. (168) the function \(J_0(kRx)\) can be expanded in a Taylor series around \(kR=0\) as

$$\begin{aligned} J_0(kRx)=1-\left( \frac{kRx}{2}\right) ^2+\cdots \ . \end{aligned}$$
(E.3)

From eq. (168), we then obtain

$$\begin{aligned} V_B(k)\simeq V_B(0)\left[ 1-\frac{k^2}{k^2_R}\right] , \quad 0\le k\le k_R. \end{aligned}$$
(E.4)

Here \(V_B(0)=2\pi WR^2I_1\), \(k_R=4I_1/I_3R^2\) and \(I_n=\int _0^\infty dxx^n\Phi (x)\).

The subsequent analytical calculations are similar to the case of a 3D Bose gas [212]. Therefore, we present the following final results for \(\varepsilon _B(k)\), \(m_p^*\) and \(\rho _B\):

$$\begin{aligned}{} & {} \tilde{\varepsilon }_B(k)=\tilde{\varepsilon }_B(0)+\frac{\hbar ^2k^2}{2m^*_B}, \end{aligned}$$
(E.5)
$$\begin{aligned}{} & {} \frac{1}{m_B^*}=\frac{1}{m_B}-\frac{V_B(0)}{\pi \hbar ^2k^2_R}\nonumber \\{} & {} \qquad \quad \times \int \limits _0^{k_A}\frac{dk'k'}{\exp [(\tilde{\varepsilon }(0)+\hbar ^2k^2/2m_B^*)/k_BT]-1}, \nonumber \\\end{aligned}$$
(E.6)
$$\begin{aligned}{} & {} \rho _B=\frac{1}{2\pi }\int \limits _0^{k_A}\frac{dk'k'}{\exp [(\tilde{\varepsilon }(0)+\hbar ^2k^2/2m_B^*)/k_BT]-1}.\nonumber \\ \end{aligned}$$
(E.7)

Using these equations, we obtain the same relation as (165). Thus, the characteristic temperature \(T_0\) is now replaced by \(T_0^*=2\pi \hbar ^2\rho _B/m_B^*\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhumanov, S. Microscopic theory of novel pseudogap phenomena and Bose-liquid superconductivity and superfluidity in high-\(T_c\) cuprates and other systems. Pramana - J Phys 97, 205 (2023). https://doi.org/10.1007/s12043-023-02654-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02654-6

Keywords

PACS Nos

Navigation