Skip to main content
Log in

Plausible room temperature superconductivity and physical properties of cuprate superconductors based on a rigorous slave-boson representation of the tJ Hamiltonian

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

We present newly clarified physical properties of cuprate superconductors based on careful examinations of our earlier studies and show plausibility of room temperature superconductivity. As well known, one of the major challenging problems in high-temperature superconductivity is to reproduce the observed phase diagrams (Chatterjee, PNAS 108:9346–9349, 2011; Oda, J Phys Soc Jpn 69:983–984, 2000; Nakano, J Phys Soc Jpn 67:2622–2625, 1998; Schmidt, New J Phys 13:065014, 2011, Cyr-Choiniere (Pseudogap temperature \({T}^{*}\) of cuprate from the Nernst effect, cond-mat.supr-con, 2017; Yoshida et al. Nature 454:1072, 2008) displaying both the monotonously decreasing pseudogap temperature \(T^{*}\) and the dome-shaped superconducting transition temperature \(T_\mathrm{c}\) in the plane of temperature vs. hole concentration. Earlier we Lee et al. (Phys Rev B 64:052501–052504, 2001), Lee and Salk (Phys Rev B 71:134518, 2005), (66:054427, 2002), (J Korean Phys Soc 37:545–551, 2000) reported successful reproductions of the phase diagrams using our slave-boson theory of U(1) and SU(2) symmetry for the tJ Hamiltonian. Later we further showed that predictions (Shin and Salk, Int J Mod Phys B 29:1542003–1542011, 2015; Shin et al. J Supercond Nov Magn 23:637–640, 2010; Eom et al. Int J Mod Phys B 21:3132, 2007) of both the temperature and doping dependence of magnetic susceptibility and the universal linear scaling behavior between the magnetic resonance energy, \(E_{{\mathrm{res}}}\) and \(T_\mathrm{c}\), are consistent with inelastic neutron scattering (INS) measurements (Dai et al. Science 284:1344, 1999; He et al. Phys Rev Lett 86:1610, 2001; Bourges et al. Phys C 424:45, 2005; Stock et al. Phys Rev B 75:172510, 2007; Wakimoto et al. Phys Rev Lett 98:247003, 2007; Yu et al. Nat Phys 5:873, 2009; Isonov et al. Phys Rev B 83:214520, 2011; Keimer et al. Nature 518:179, 2015). In this work we present further clarifications of physics involved with both the phase diagrams and the INS measurements. For this cause we explore the role of spin–charge coupling on both the universal behavior of \({T^{*}}/T_\mathrm{c}\) from the phase diagrams (Chatterjee, 2011) and the universal scaling ratio of \({E_{{\mathrm{res}}}}/{k_\mathrm{B} T_\mathrm{c}}\) from the INS measurements (He et al. Phys Rev Lett 86:1610, 2001; Bourges et al. Phys C 424:45, 2005; Yu et al. Nat Phys 5:873, 2009). Both of them are found to be independent of the Heisenberg exchange coupling constant J, involving the distinctive presence of spin pairing order in association with the two energy scales, the magnetic resonance energy and the pseudogap temperature. In addition, we also discuss the J independent universal behavior of the superfluid density vs. the superconducting transition temperature. We explain most specifically physics on how all of these universal behaviors are related to the presence of spin–charge coupling. The spin–charge coupling here refers to coupling between the spin (spinon) paring order and the charge (holon) paring order which is manifested in our rigorous derivation (Lee et al. 2001; Lee and Salk, 2005, 2002) of the slave-boson-based tJ Hamiltonian. In short, we plan to explain salient physics involved with the observed universal behaviors above. Noting that in association with the universal scaling behaviors of both \({T^{*}}/T_\mathrm{c}\) and \({E_{\mathrm{res}}}/{k_\mathrm{B} T_\mathrm{c}}\) the higher the J, the higher the \(T_\mathrm{c}\), we propose that room temperature superconductivity is plausible with proper chemical synthesis of cuprate oxides meeting a suitably high J value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chatterjee, U., Ai, D., Zhao, J., Rosenkranz, S., Kaminski, A., Raffy, H., Li, Z., Kadowaki, K., Randeia, M., Norman, R., Campuzano, J.C.: Electronic phase diagram of high-temperature copper oxide. PNAS 108, 9346–9349 (2011)

    Article  Google Scholar 

  2. Oda, M., Dipasupil, R.M., Momono, N., Ido, M.: Hyperbolic dependence of \(2\Delta _0\) vs. \(T_c\) ratio pn Hole-doping level in high \(T_c\) cuprates. J. Phys. Soc. Jpn. 69, 983–984 (2000)

    Article  Google Scholar 

  3. Nakano, T., Momono, N., Oda, M., Ido, M.: Correlation between the doping dependences of superconducting gap magnitude \(2\varDelta _{\mathit{0}}\) and pseudogap temperature \(T^{\ast }\) in high-\(T_{c}\) cuprates. J. Phys. Soc. Jpn 67, 2622–2625 (1998)

    Article  Google Scholar 

  4. Schmidt, A.R., Fujita, K., Kim, E.-A., Lawler, M.J., Esaki, H., Uchida, S., Lee, D.-H., Davis, J.C.: Electronic structure of the cuprate superconducting and pseudogap phases from spectroscopic imaging STM. New J. Phys. 13, 065014 (2011). s

    Article  Google Scholar 

  5. Cyr-Choiniere Daou, O., Laliberte, R.F., Collgnon, Badoux, C.S., LeBoeuf, D., Chang, J.B.J., Ramshaw, D.A., Bonn Hardy, W.N, Liang, R., Cheng J.-Q, Zhou, J.-S., Goodenough, J.B., Pyon, S., Takayama, T., Takagi Doiron-Leyraud, H.N., Taillefer, L.: Pseudogap temperature \(\text{T}^{\ast }\) of cuprate from the Nernst effect, cond-mat.supr-con, pp. 1–25 (2017)

  6. Yoshida, Y., Taylor, C., Wahl, P., Schmidt, A., lee, J., Fujita, K., Alldredge, J.W., Mcelroy, K., Lee, J., Eisaki, H., Uchida, S., Lee, D.-H., Davis, J.C.: How Cooper pairs vanish approaching the Mott insulator. Nature 454, 1072 (2008)

    Article  Google Scholar 

  7. Lee, S.-S., Salk, S.-H.S.: High-Tc phase diagram based on the SU(2) slave-boson approach to the t–J Hamiltonian. Phys. Rev. B 64, 052501–052504 (2001)

    Article  Google Scholar 

  8. Lee, S.-S., Salk, S.-H.S.: Doping and temperature dependence of superfluid weight and spectral function. Phys. Rev. B 71, 134518 (2005)

    Article  Google Scholar 

  9. Lee, S.-S., Salk, S.-H.S.: Holon pairing instability based on the Bethe-Salpeter equation obtained from the t-J Hamiltonians of both U(1) and SU(2) slave-boson symmetries. Phys. Rev. B. 66, 054427 (2002)

  10. Lee, S.-S., Salk, S.-H.: High temperature superconductivity as a consequence of coupling between the charge and spin degrees of freedom. J. Korean Phys. Soc. 37, 545–551 (2000)

    Google Scholar 

  11. Anderson, P.: Physics of the resonating valence bond (pseudogap) state of the doped Mott insulator: spin-charge locking. Phys. Rev. Lett. 96, 17001 (2006)

    Article  Google Scholar 

  12. Shin, S.-J., Salk, S.-H.S.: A universal scaling behavior in magnetic resonance peak in high temperature superconductivity. Int. J. Mod. Phys. B 29, 1542003–1542011 (2015)

    Article  MathSciNet  Google Scholar 

  13. Shin, S.J., Lee, S.-S., Kim, K.-S., Eom, J.-G., Eom, J.-H., Salk, S.-H.: Invariant physical properties in high temperature superconductivity. J. Supercond. Novel Magn. 23, 637–640 (2010)

    Article  Google Scholar 

  14. Eom, J.-G., Eom, J.-H., Salk, S.-H.: Dependence of magnetic susceptiblity on the nest nearest hopping term for high \(T_c\) cuprates. Int. J. Mod. Phys. B 21, 3132 (2007)

    Article  Google Scholar 

  15. Lee, S.-S., Eom, J.-H., Kim, K.-S., Salk, S.-H.: Origin of peak-dip-hump structure in the in-plane optical conductivity of the high-T cuprates. Phys. Rev. B 66, 064520 (2002)

    Article  Google Scholar 

  16. Eom, J.-H., Lee, S.-S., Ki-Seok Kim, K.-S., Salk, S.-H.S.: Origin of the hump structure in the in-plane optical conductivity of high \(T_c\) superconductivity based on SU(2) slave-boson theory. Phys. Rev. B 70, 024522 (2002)

    Article  Google Scholar 

  17. Eom, J.-H., Salk, S.-H.: Scaling behavior in the optical conductivity of two-dimensional systems of strongly correlated electrons on the U(1) slave-boson approach to the \(t-J\) Hamiltonian. Phys. Rev. B 72, 064508 (2005)

    Article  Google Scholar 

  18. Dai, P., Mook, H.A., Hayden, S.M., Aeppli, G., Perring, T.G., Hunt, R.D., Dogan, F.: The magnetic excitation spectrum and thermodynamics of high-\(T_{{\rm c}}\) superconductors. Science 284, 1344 (1999)

    Article  Google Scholar 

  19. He, H., Sidis, Y., Bourges, P., Gu, G.D., Ivanov, A., Koshizuka, N., Liang, B., Lin, C.T., Regnault, L.P., Schoenherr, E., Keimer, B.: Resonant spin excitation in an overdoped high temperature superconductor. Phys. Rev. Lett. 86, 1610 (2001)

    Article  Google Scholar 

  20. Bourges, P., Keimer, B., Peilhes, P., Regnault, L.P., Sidis, Y., Ulrich, C.: The resonant magnetic mode: a common feature of high-\(T_{{\rm c}}\) superconductors. Phys. C 424, 45 (2005)

    Article  Google Scholar 

  21. Stock, C., Cowley, R.A., Buyers, W.J.L., Coldea, R., Broholm, C., Frost, C.D., Birgeneau, R.J., Liang, R., Bonn, D., Hardy, W.N.: Evidence for decay of spin waves above the pseudogap of underdoped YBa2Cu3O6.35. Phys. Rev. B 75, 172510 (2007)

    Article  Google Scholar 

  22. Wakimoto, S., Yamada, K., Tranquada, J.M., Frost, C.D., Birgeneau, R.J., Zhang, H.: Disappearance of antiferromagnetic spin excitations in over-doped \(La_{2-x} Sr_x CuO_4 \). Phys. Rev. Lett. 98, 247003 (2007)

    Article  Google Scholar 

  23. Yu, G., Li, Y., Motoyama, E.M., Greven, M.: A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors. Nat. Phys. 5, 873 (2009)

    Article  Google Scholar 

  24. Isonov, D.S., Park, J.T., Chamukha, A., Li, Y., Boris, A.V., Keimer, B., Hinkov, V.: Crossover from weak to strong pairing in unconventional superconductors. Phys. Rev. B 83, 214520 (2011)

    Article  Google Scholar 

  25. Keimer, B., Kivelson, S.A., Norman, M.R., Uchida, S., Zaanen, J.: High temperature superconductivity in the cuprates. Nature 518, 179 (2015). (references therein)

    Article  Google Scholar 

  26. Lee, P., Nagaosa, N., Wen, X.-G.: Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys 78, 17 (2006). (references therein)

    Article  Google Scholar 

  27. Suzumura, Y., Hasegawa, Y., Fukuyama, H.: Mean field theory of RVB and superconductivity. J. Phys. Soc. Jpn. 57, 2768–2788 (1988)

    Article  Google Scholar 

  28. Gimm, T.-H., Lee, S.-S., Hong, S.-P., Salk, S.-H.S.: Holon pair condensation and phase diagram of high-Tc cuprates. Phys. Rev. B 60, 6326 (1999)

    Article  Google Scholar 

  29. Gimm, T.-H., Salk, S.-H.S.: Phase separation based on a U(1) slave-boson functional integral approach to the t-J model. Phys. Rev. B 62, 13930 (2000)

    Article  Google Scholar 

  30. Anderson, P.: Is there glue in cuprate superconductors? Science 316, 1705 (2017)

    Article  Google Scholar 

  31. Scalapino, D.J.: A common thread: the pairing interaction for the unconventional superconductors. Rev. Mod. Phys. 84, 1383 (2012). (references therein)

    Article  Google Scholar 

  32. Bozovic, I., He, X., Wu, J., Bollinger, A.T.: Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309 (2016)

    Article  Google Scholar 

  33. Logvenov, G., Gozar, A., Bozovic, I.: High-temperature superconductivity in a single copper-oxygen plane. Science 326, 699–702 (2009)

  34. Bozovic, I.: Atomic layer engineering of superconducting oxides: yesterday, today, tomorrow. Trans. IEEE Appl. Supercond. 11, 2686 (2001)

  35. Uemura, Y.J.: Superconductivity: commonalities in phase and mode. Nat. Mater. 8, 253 (2009)

    Article  Google Scholar 

  36. Rybicki, D., Jurkutat, M., Reichardt, S., Kapusta, C., Haase, J.: Perspective on the phase diagram of cuprate high-temperature superconductors. Nat. Commun. 7, 11413 (2016). (references therein)

    Article  Google Scholar 

  37. Chang, J., Blackburn, E., Holmes, A.T., Christensen, N.B., Larsen, J., Mesot, J., Ruixing Liang, D.A., Bonn, W.N.Hardy, Watenphul, A., Zimmermann, Mv, Forgan, E.M., Hayden, S.M.: Direct observation of competition between superconductivity and charge density wave order in \(\text{ YBa }_{2}\text{ Cu }_{3}\text{ O }_{6.67}\). Nat. Phys. 8, 871–876 (2012)

    Article  Google Scholar 

  38. Davis, J.C., Lee, D.-H.: Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity. PNAS 110, 17623 (2013). (references therein)

    Article  Google Scholar 

  39. Mesaros, A., Fujita, K., Edkins, S.D., Hamidian, M.H., Eisaki, H., Uchida, S., Davis, J.C., Lawler, M.J., Kim, E.-A.: Commensurate \(4a_{0}\)-period charge density modulations throughout the \(\text{ Bi }_{2}\text{ Sr }_{2}\text{ CaCu }_{2}\text{ O }_{8+x}\) pseudogap regime. PNAS 113, 12661–12666 (2016)

    Article  Google Scholar 

  40. Hamidian, M.H., Edkins, S.D., Joo, H.H., Kostin, A., Eisaki, Uchida, S., Lawler, M.J., Kim, E.-A., Mackenzie, A.P., Fujita, K., Lee, J., Davis, J.C.: Detection of a Cooper-pair density wave in \(\text{ Bi }_{2}\text{ Sr }_{2}\text{ CaCu }_{2}\text{ O }_{8+x,}\). Nature 532, 343–347 (2016)

    Article  Google Scholar 

  41. Thampy, V., Chen, X.M., Cao, Y., Mazzoli, C., Barbour, M., Hu, W., Miao, H., Fabbris, W., Zhong, R.D., Gu, G., Tranquada, D.J.M., Robinson, I.K., Wilkins, S.B., Dean, M.P.M.: Static charge-density-wave order in the superconducting state of La2-xBaxCuO4. Phys. Rev. B 95, 241111(R) (2017)

    Article  Google Scholar 

  42. Tabis, W., Li, Y., Le Tacon, M., Braicovich, L., Kreyssig, A., Minola, M., Dellea, G., Weschke, E., Veit, M.J., Ramazanoglu, M., Goldman, A., Schmitt, T., Ghiringhelli, G., Barišić, N., Chan, M.K., Dorow, C.J., Yu, G., Zhao, X., Keimer, B., Greven, M.: Connection between charge-density-wave order and charge transport in the cuprate superconductors. Nat. Commun. 5, 5875 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The author (Sung-Ho. S. Salk) is indebted to his past and present colleagues for helpful discussions on various subjects: they are S.-A. Ahn, M. Aihara, G. P. Alldredge, S. Beck, J. R. Brock, Y. S. Chang, T. S. Chen, M.-Y. Cho, N. N. Choi, W. R. Coker, M. J. S. Dewar, H. Doh, I. E. Dikshtein, R. W. Emmons, J. G. Eom, J.-H. Eom, J. D. Fan, T.-H. Gimm, R. C. Haddon, D. E. Hagen, S.-P. Hong, M. Ido, J. L. Kassner, C. S. Kim, H.T. Kim, J. Kim, K.-S. Kim, Y. B. Kim, C. R. Klein, H. Kollmar, D. Landman, R. B. Laughlin, C. K. Lutrus, B. I. Min, H.-J. Lee, S.-I. Lee, S.-S. Lee, J. S. Lee, G. Loper, C. K. Lutrus, P. P. Middleton, M.-I. Mun, M. Oda, T. Oshiro, K. Park, Y.-I. Seo, S.-J Shin, Murray Teitell, P. K. Weiner, Y. Yamaguchi, C.-H. Yang, N.-C. Yeh, J. Yi. He is grateful to I. Bozovic for his valuable comments on the superfluid density in relation to the dome-shaped superconducting transition temperature of cuprates and the quantum critical point to be clarified. Last but not least, he thanks A. M. Gulian, C. Bourgeois, organizers and sponsors greatly for invitation and hospitality during the 2nd International Workshop on Towards Room Temperature Superconductivity: Superhydrides and More.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Ho S. Salk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2043 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salk, SH.S. Plausible room temperature superconductivity and physical properties of cuprate superconductors based on a rigorous slave-boson representation of the tJ Hamiltonian. Quantum Stud.: Math. Found. 5, 149–159 (2018). https://doi.org/10.1007/s40509-017-0137-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-017-0137-7

Keywords

Navigation