Skip to main content
Log in

Theoretical investigation of electromagnetohydrodynamic flow of a couple stress fluid through a circular microchannel

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This study assesses the dynamics of electromagnetohydrodynamic (EMHD) flow of couple stress fluid through a circular cylinder. The flow is assumed to be driven by electromagnetic force and applied pressure gradient. A comprehensive theoretical framework is developed to solve the Poisson–Boltzmann equation (under the Debye–Hückel approximation) for the electric potential within the electric double layer and the momentum equation for the fluid flow under suitable boundary conditions. The analytical expressions are obtained for velocity and volume flow rate. It is observed that the present results of the couple stress fluid (CSF) model strongly match with those reported in the literature for a Newtonian fluid. The outcome of our analysis reveals that the velocity accelerates with an increase in couple stress and electric field parameters, while it decreases with Hartmann number in the absence of lateral electric field. The study finds major applications in chemical processing and mixing, development of biochips for drug delivery and biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F F Reuss, Soc. Imp. Natur. Moscow 2, 327 (1809)

    Google Scholar 

  2. R J Montes, J E Butler and A J C Ladd, Electrophoresis 40, 437 (2019)

    Article  Google Scholar 

  3. M Socol, H Ranchon, B Chami, A Lesage, J M Victor, M Manghi and A Bancaud, Macromolecules 52, 1843 (2019)

    Article  ADS  Google Scholar 

  4. T Roy, K Szuttor, J Smiate, C Holm and S Hardt, Polymers 11, 488 (2019)

    Article  Google Scholar 

  5. X Ou, P Chen, X Huang, S Li and B F Liu, J. Sep. Sci. 43, 25 (2020)

    Article  Google Scholar 

  6. Y Y Leslie, H C Chan, P Y Y Chan and J R Friend, Small 7, 12 (2011)

    Article  Google Scholar 

  7. N D Trani, A Silvestri, A Sizovs, Y Wang, D R Erm, D Demarchi, X Liu and A Grattoni, Lab. Chip 20, 1562 (2020)

    Article  Google Scholar 

  8. Z Mahdavi, H Rezvani and M K Moraveji, RSC Adv. 10, 18280 (2020)

    Article  ADS  Google Scholar 

  9. K Fluri, K Fitzpatrick, N Chiem and D J Harrison, Anal. Chem. 68, 4285 (1996)

    Article  Google Scholar 

  10. E R Castro and A Manz, J. Chromatograph. A 1461, 198 (2016)

    Article  Google Scholar 

  11. A E Herr, J I Molho, J G Santiago, M G Mungal and T W Kenny, Anal. Chem. 72, 1053 (2000)

    Article  Google Scholar 

  12. M J Pikal, Adv. Drug Deliv. Rev. 46, 281 (2000)

    Article  Google Scholar 

  13. K Horiuchi, P Dutta and C D Richards, Microfluid. Nanofluid. 3, 347 (2007)

    Article  Google Scholar 

  14. D Kim, J D Posner and J G Santiago, Sens. Actuat. A: Phys. 141, 201 (2008)

    Article  Google Scholar 

  15. D Burgreen and F R Nakache, J. Phys. Chem. 68, 1084 (1964)

    Article  Google Scholar 

  16. L Hu, J D Harrison and J H Masliyah, J. Colloid Int. Sci. 215, 300 (1999)

    Article  ADS  Google Scholar 

  17. R J Yang, L M Fu and Y C Lin, J. Colloid Int. Sci. 239, 98 (2001)

    Article  ADS  Google Scholar 

  18. Z Chai and B Shi, Phys. Lett. A 364, 183 (2007)

    Article  ADS  Google Scholar 

  19. V K Stokes, Phys. Fluids 9, 1709 (1966)

    Article  ADS  Google Scholar 

  20. N M Bujurke and N B Naduvinamani, Int. J. Mech. Sci. 32, 969 (1990)

    Article  Google Scholar 

  21. N B Naduvinamani, P S Hiremath and G Gurubasavaraj, Tribol. Int. 34, 739 (2001)

    Article  Google Scholar 

  22. N B Naduvinamani, S T Fathima and P S Hiremath, Tribol. Int. 36, 949 (2003)

    Article  Google Scholar 

  23. V K Stokes, Theories of fluids with microstructure (Springer, 1984)

  24. J C Misra and S Chandra, J. Mech. Med. Biol. 18, 1850035 (2018)

    Article  Google Scholar 

  25. T Siva, B Kumbhakar, S Jangili and P K Mondal, Phys. Fluids 32, 102013 (2020)

    Article  ADS  Google Scholar 

  26. T Siva, B Kumbhakar, S Jangili and P K Mondal, Eur. J. Mech./B Fluids 95, 83 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  27. Z Tan and J Liu, Phys. Lett. A 381, 2573 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. C Zhao, E Zholkovskij, J H Masliyah and C Yang, J. Colloid Interface Sci. 326, 503 (2008)

    Article  ADS  Google Scholar 

  29. K Saha, P V S N Murthy and S Chakraborty, Electrophoresis 43, 732 (2022)

    Article  Google Scholar 

  30. M D K Niazi and H Xu, Math. Probl. Eng. 2020, 1723256 (2020)

    Article  Google Scholar 

  31. D Li and K Li, J. Mech. Sci. Technol. 36, 1847 (2022)

    Article  Google Scholar 

  32. K N Vasista, S K Mehta, S Pati and S Sarkar, Phys. Fluids 33, 123110 (2021)

    Article  ADS  Google Scholar 

  33. A A Siddiqui and A Lakhtakia, Proc. R. Soc. A 465, 501 (2009)

    Article  ADS  Google Scholar 

  34. Z Y Xie, Y J Jian and F Q Li, Int. J. Heat Mass Transf. 119, 355 (2018)

    Article  Google Scholar 

  35. Y Liu and Y Jian, Appl. Math Mech-Engl. Ed. 41, 1431 (2020)

    Article  Google Scholar 

  36. M S Saravani and M Kalteh, European J. Mech./B Fluids 80, 13 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  37. S Sarkar, S Ganguly and S Chakraborty, Microfluid. Nanofluid. 21, 56 (2017)

    Article  Google Scholar 

  38. S Chakraborty and D Paul, J. Phys. D: Appl. Phys. 39, 5364 (2006)

    Article  ADS  Google Scholar 

  39. C Yang, Y Jian, Z Xie and F Li, European J. Mech./B Fluids 74, 180 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  40. A A Khan, K Akram, A Zaman, A O Bég and T A Bég, Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 236, 1080 (2022)

  41. Z D Ding, K Tian and Y J Jian, Appl. Math. Mech-Engl. Ed. 43, 1289 (2022)

    Article  Google Scholar 

  42. S Mukherjee, J Dhar, S Dasgupta and S Chakraborty, Phys. Fluids 34, 082019 (2022)

    Article  Google Scholar 

  43. T Siva, S Jangili and B Kumbhakar, Pramana – J. Phys. 96, 168 (2022)

    Article  ADS  Google Scholar 

  44. A M Ribau, L L Ferrás, M L Morgado, M Rebelo, M A Alves, F T Pinho and A M Afonso, J. Eng. Math. 127, 7 (2021)

    Article  Google Scholar 

  45. Z Xie and Y Jian, Energy 252, 124029 (2022)

    Article  Google Scholar 

  46. Y Jian, D Si, L Chang and Q Liu, Chem. Eng. Sci. 134, 12 (2015)

    Article  Google Scholar 

  47. T Siva, S Jangili and B Kumbhakar, Int. J. Therm. Sci. 191, 108339 (2023)

    Article  Google Scholar 

  48. J Jang and S S Lee, Sens. Actuat. A 80, 84 (2000)

    Article  Google Scholar 

  49. R J Moreau, Magnetohydrodynamics (Springer, 1990)

  50. G Zhao, Y Jian, L Chang and M Buren, J. Magn. Magn. Mater. 387, 111 (2015)

  51. M Azari, A Sadeghi and S Chakraborty, Appl. Math. Model. 87, 640 (2020)

    Article  MathSciNet  Google Scholar 

  52. C Zhao and C Yang, Biomicrofluidics 5, 014110 (2011)

    Article  Google Scholar 

  53. R Chakraborty, R Dey and S Chakraborty, Int. J. Heat Mass Transf. 67, 1151 (2013)

    Article  Google Scholar 

  54. C G Subramaniam and P K Mondal, Phys. Fluids 32, 013108 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all the reviewers for their valuable comments and suggestions, which helped us to improve the quality of the work. The second author (Srinivas Jangili) gratefully acknowledges the support of the Research Seed Money (RSM) funds provided by NIT Warangal, Telangana, India [Sanction Letter Ref: Head Code P1136, dated 03-12-2020].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas Jangili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Jangili, S. & Ramana Murthy, J.V. Theoretical investigation of electromagnetohydrodynamic flow of a couple stress fluid through a circular microchannel. Pramana - J Phys 97, 191 (2023). https://doi.org/10.1007/s12043-023-02645-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02645-7

Keywords

PACS Nos

Navigation