Skip to main content
Log in

A Numerical Approach for Analyzing The Electromagnetohydrodynamic Flow Through a Rotating Microchannel

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The purpose of the paper is to develop a mathematical foundation for exploring the complex interaction of Coriolis and Lorentz forces with the electromagnetohydrodynamic (EMHD) flow of a power-law fluid inside a microchannel with wall slip condition. Both the Lorentz and Coriolis forces act orthogonally to each other. Mathematical modeling of the problem is based on a set of classical Maxwell and Navier–Stokes equations, which are subsequently solved numerically by employing an implicit finite difference methodology. The numerical solution thus obtained has been found to be in an excellent agreement correlation with the ones reported in the scientific literature, for some limiting cases. A rigorous effort has been made to understand how the governing parameters (e.g., the Hartmann number, the fluid behavior index, the rotating Reynolds number, and the slip parameter) affect the flow under electromagnetohydrodynamic environment. The numerical results exhibit the strong dependence of the power-law flow velocity on the Reynolds number and the Hartman number. We have also noted that the shear-thinning flow accelerates rapidly, as compared to the Newtonian fluid, when the Hartmann number is greater than a particular value (which we call the critical value). Further, the existence of a cross-over point (the value of the governing parameter at which the way the parameter affects the centerline velocity is changed) has also been predicted. The outcome of the work may be helpful to meet the upcoming challenges in future technologies related to mechanical and electrical mechanisms where the non-Newtonian flows are encountered in rotating systems under intense magnetic forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the relevant material is available upon request.

References

  1. Holger, B.; Claudia, G.: Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21, 12–26 (2000). https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1%3c12::AID-ELPS12%3e3.0.CO;2-7

    Article  Google Scholar 

  2. Ken-ichi, O.; Kaoru, T.; Andreas, M.: Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29, 4443–4453 (2008). https://doi.org/10.1002/elps.200800121

    Article  Google Scholar 

  3. George, K.; Ali, B.; Narayan, A.: Microflows and Nanoflows Fundamentals and Simulation. Springer Press, New York (2005)

    MATH  Google Scholar 

  4. Van Lintel, H.T.G.; Van de Pol, F.C.M.; Bouwstra, S.: A piezoelectric micropump based on micromachining of silicon. Sensors Actuat. 15, 153–167 (1988). https://doi.org/10.1016/0250-6874(88)87005-7

    Article  Google Scholar 

  5. Farideh, A.; Haslina, J.; Nurul, A.M.Y.: A comprehensive study of micropumps technologies. Int. J. Electrochem. Sci. 7, 9765–9780 (2012)

    Google Scholar 

  6. Mehdi, K.; Nader, P.: Laminar MHD flow and heat transfer of power-law fluids in square microchannels. Int. J. Therm. Sci. 99, 26–35 (2016). https://doi.org/10.1016/j.ijthermalsci.2015.07.031

    Article  Google Scholar 

  7. Takashima, M.: The effect of rotation on electrohydrodynamic instability. Canad. J. Phys. (1976). https://doi.org/10.1139/p76-039

    Article  Google Scholar 

  8. An-Cheng, R.; Min-Hsing, C.; Falin, C.: Effect of rotation on the electrohydrodynamic instability of a fluid layer with an electrical conductivity gradient. AIP Phys. Fluids 22, 024102 (2010). https://doi.org/10.1063/1.3308542

    Article  MATH  Google Scholar 

  9. Shit, G.C.; Mondal, A.; Sinha, A.; Kundu, P.K.: Effects of slip velocity on rotating electro-osmotic flow in a slowly varying micro-channel. Colloids Surfaces A: Physicochem. Eng. Aspects 489, 249–255 (2016). https://doi.org/10.1016/j.colsurfa.2015.10.036

    Article  Google Scholar 

  10. Ng, C.O.; Qi, C.: Electro-osmotic flow in a rotating rectangular microchannel. Proc. Royal Soc. A: Math., Phys. Eng. Sci. 471(2179), 20150200 (2015). https://doi.org/10.1098/rspa.2015.0200

    Article  MathSciNet  MATH  Google Scholar 

  11. Yongjun, J.: Transient MHD heat transfer and entropy generation in a micro parallel channel combined with pressure and electro-osmotic effects. Int. J. Heat Mass Transf. 89, 193–205 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.045

    Article  Google Scholar 

  12. Chien-Cheng, C.; Chang, Y.W.: Rotating electro-osmotic flow over a plate or between two plates. Phys. Rev. E 84, 056320 (2011). https://doi.org/10.1103/PhysRevE.84.056320

    Article  Google Scholar 

  13. Quan-sheng, L.; Yong-jun, J.; Liangui, Y.: Alternating current electroosmotic flow of the Jeffreys fluids through a slit microchannel. AIP Phys. Fluids 23, 102001 (2011). https://doi.org/10.1063/1.3640082

    Article  MATH  Google Scholar 

  14. Quan-sheng, L.; Yong-jun, J.; Liangui, Y.: Time periodic electroosmotic flow of the generalized Maxwell fluids between two microparallel plates. J. Non-Newton Fluid Mech. 166, 478–486 (2011). https://doi.org/10.1016/j.jnnfm.2011.02.003

    Article  MATH  Google Scholar 

  15. Armand, A.: Transverse electrokinetic and microfluidic effects in micropatterned channels: lubrication analysis for slab geometries. Phys. Rev. E 65, 016301 (2001). https://doi.org/10.1103/PhysRevE.65.016301

    Article  Google Scholar 

  16. Rivero, M.; Cuevas, S.: Analysis of the slip condition in magnetohydrodynamic micropumps. Sensor Actuat. B: Chem. 166–167, 884–892 (2012). https://doi.org/10.1016/j.snb.2012.02.050

    Article  Google Scholar 

  17. Zhi-Yong, X.; Yong-Jun, J.: Rotating electroosmotic flow of power-law fluids at high zeta potentials. Colloids Surfaces A 461, 231–239 (2014). https://doi.org/10.1016/j.colsurfa.2014.07.051

    Article  Google Scholar 

  18. Li, S.X.; Jian, Y.J.; Xie, Z.Y.; Liu, Q.S.; Li, F.Q.: Rotating electro-osmotic flow of third grade fluids between two microparallel plates. Colloids Surfaces A: Physicochem. Eng. Aspects 470, 240–247 (2015). https://doi.org/10.1016/j.colsurfa.2015.01.081

    Article  Google Scholar 

  19. Cheng, Q.; Chiu-On, N.: Electroosmotic flow of a power-law fluid through an asymmetrical slit microchannel with gradually varying wall shape and wall potential. Colloids Surfaces A 472, 26–37 (2015). https://doi.org/10.1016/j.colsurfa.2015.02.039

    Article  MATH  Google Scholar 

  20. Sun, Z.Y.; Gao, Y.T.; Yu, X.; Liu, Y.: Formation of vortices in a combined pressure-driven electro-osmotic flow through the insulated sharp tips under finite Debye length effects. Colloids Surfaces A: Physicochem. Eng. Aspects 366, 1–11 (2010). https://doi.org/10.1016/j.colsurfa.2010.04.038

    Article  Google Scholar 

  21. Dayong, Y.; Ying, L.: Numerical simulation of electroosmotic flow in microchannels with sinusoidal roughness. Colloids Surfaces A 328, 28–33 (2008). https://doi.org/10.1016/j.colsurfa.2008.06.029

    Article  Google Scholar 

  22. Claudio, L.A.B.; Maria, L.O.: Electrokinetic flow of non-Newtonian fluids in microchannels. J. Colloid Interface Science 320, 582–589 (2008). https://doi.org/10.1016/j.jcis.2007.12.032

    Article  Google Scholar 

  23. Remco, T.; Takashi, T.: Polymer depletion-induced slip near an interface. J. Phys.: Condense Matter (2005). https://doi.org/10.1088/0953-8984/17

    Article  Google Scholar 

  24. Guillaume, D.; Pierre, J.; Patrick, T.: Rheology of complex fluids by particle image velocimetry in microchannels. Appl. Phys. Lett. 89, 024104 (2006). https://doi.org/10.1063/1.2221501

    Article  Google Scholar 

  25. Kok, P.H.; Kazarian, S.G.; Briscoe, B.J.; Lawrence, C.J.: Effects of particle size on near-wall depletion in mono-dispersed colloidal suspensions. J. Colloid Interface Sci. 280, 511–517 (2004). https://doi.org/10.1016/j.jcis.2004.08.032

    Article  Google Scholar 

  26. Suman, C.: Dynamics of the capillary flow of blood into a microfluidic channel. Lab Chip 5, 421–430 (2005). https://doi.org/10.1039/B414566F

    Article  Google Scholar 

  27. Cunlu, Z.; Chun, Y.: On the competition between streaming potential effect and hydrodynamic slip effect in pressure-driven microchannel flows. Colloids Surfaces A 386, 191–194 (2011). https://doi.org/10.1016/j.colsurfa.2011.06.014

    Article  Google Scholar 

  28. Yves, N.: Blood flow slip and viscometry. Biophys. J. 11, 252–264 (1971). https://doi.org/10.1016/S0006-3495(71)86212-4

    Article  Google Scholar 

  29. Brunn, P.: The velocity slip of polar fluids. Rheological Acta 14, 1039–1054 (1975). https://doi.org/10.1007/BF01515899

    Article  MATH  Google Scholar 

  30. Hussain, S.; Jamal, M.; Haddad, Z.; Arıcı, M.: Numerical modeling of magnetohydrodynamic thermosolutal free convection of power law fluids in a staggered porous enclosure. Sustain. Energy Technol. Assess. 53, 102395 (2022)

    Google Scholar 

  31. Khan, U.; Abbasi, A.; Ahmed, N.; Mohyud-Din, S.T.: Particle shape, thermal radiations, viscous dissipation and joule heating effects on flow of magneto-nanofluid in a rotating system. Eng. Comput. 34(8), 2479–2498 (2017). https://doi.org/10.1108/EC-04-2017-0149

    Article  Google Scholar 

  32. Jian, Y.; Si, D.; Chang, L.; Liu, Q.: Transient rotating electromagnetohydrodynamic micropumps between two infinite microparallel plates. Chem. Eng. Sci. 134, 12–22 (2015). https://doi.org/10.1016/j.ces.2015.04.036

    Article  Google Scholar 

  33. Zhi-Yong, X.; Yong-Jun, J.: Rotating electromagnetohydrodynamic flow of power-law fluids through a microparallel channel. Colloids Surfaces A 529, 334–345 (2017). https://doi.org/10.1016/j.colsurfa.2017.05.062

    Article  Google Scholar 

  34. Rajib, C.; Ranabir, D.; Suman, C.: Thermal characteristics of electromagnetohydrodynamic flows in narrow channels with viscous dissipation and Joule heating under constant wall heat flux. Int. J. Heat Mass Transf. 67, 1151–1162 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.099

    Article  Google Scholar 

  35. Yan, S.; Kalbasi, R.; Nguyen, O.; Karimipour, A.: Rheological behavior of hybrid MWCNTs-TiO2/EG nanofluid: a comprehensive modeling and experimental study. J. Mol. Liq. 308, 113058 (2020). https://doi.org/10.1016/j.molliq.2020.113058

    Article  Google Scholar 

  36. Al-Rashed, A.A.A.A.; Shahsavar, A.; Rasooli, O., et al.: Numerical assessment into the hydrothermal and entropy generation characteristics of biological water-silver nano-fluid in a wavy walled microchannel heat sink. Int. Commun. Heat Mass Transf. 104, 118–126 (2019). https://doi.org/10.1016/j.icheatmasstransfer.2019.03.007

    Article  Google Scholar 

  37. Chu, Y.; Bashir, S.; Ramzan, M.; Malik, M.Y.: Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Math. Methods Appl. Sci. (2022). https://doi.org/10.1002/mma.8234

    Article  Google Scholar 

  38. Chu, Y.; Nazir, U.; Sohail, M.; Selim, M.M.; Lee, J.: Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. 5(3), 119 (2021). https://doi.org/10.3390/fractalfract5030119

    Article  Google Scholar 

  39. Tie-Hong Zhao, T.; Khan, M.I.; Chu, Y.: Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7310

    Article  Google Scholar 

  40. Jamshed, W.; Aziz, A.: Entropy analysis of TiO2-Cu/EG Casson hybrid nanofluid via Cattaneo-Christov heat flux model. Appl. Nanosci. 08, 01–14 (2018)

    Google Scholar 

  41. Jamshed, W.: Numerical investigation of MHD impact on maxwell nanofluid. Int. Commun. Heat Mass Transf. 120(5), 683 (2021)

    Google Scholar 

  42. Jamshed, W.; Nisar, K.S.: Computational single phase comparative study of Williamson nanofluid in parabolic trough solar collector via Keller box method. Int. J. Energy Res. 45(7), 10696–10718 (2021)

    Article  Google Scholar 

  43. Jamshed, W.; Devi, S.U.; Nisar, K.S.: Single phase-based study of Ag-Cu/EO Williamson hybrid nanofluid flow over a stretching surface with shape factor. Phys. Scr. 96, 065202 (2021)

    Article  Google Scholar 

  44. Jamshed, W.; Nisar, K.S.; Ibrahim, R.W.; Shahzad, F.; Eid, M.R.: Thermal expansion optimization in solar aircraft using tangent hyperbolic hybrid nanofluid: a solar thermal application. J. Mater. Res. Technol. 14, 985–1006 (2021)

    Article  Google Scholar 

  45. Jamshed, W.; Nisar, K.S.; Ibrahim, R.W.; Mukhtar, T.; Vijayakumar, V.; Ahmad, F.: Computational frame work of Cattaneo–Christov heat flux effects on Engine Oil based Williamson hybrid nanofluids: a thermal case study. Case Studies Thermal Eng. 26, 101179 (2021)

    Article  Google Scholar 

  46. Jamshed, W.; Mishra, S.R.; Pattnaik, P.K.; Nisar, K.S.; Devi, S.S.U.; Prakash, M.; Shahzad, F.; Hussain, M.; Vijayakumar, V.: Features of entropy optimization on viscous second grade nanofluid streamed with thermal radiation: a Tiwari and Das model. Case Studies Thermal Eng. 27, 101291 (2021)

    Article  Google Scholar 

  47. Jamshed, W.; Nasir, N.A.A.M.; Isa, S.S.P.M.; Safdar, R.; Shahzad, F.; Nisar, K.S.; Eid, M.R.; Abdel-Aty, A.H.; Yahia, I.S.: Thermal growth in solar water pump using Prandtl-Eyring hybrid nanofluid: a solar energy application. Sci. Rep. 11, 18704 (2021)

    Article  Google Scholar 

  48. Jamshed, W.; Shahzad, F.; Safdar, R.; Sajid, T.; Eid, M.R.; Nisar, K.S.: Implementing renewable solar energy in presence of Maxwell nanofluid in parabolic trough solar collector: a computational study. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1989518

    Article  Google Scholar 

  49. Jamshed, W.: Finite element method in thermal characterization and streamline flow analysis of electromagnetic silver-magnesium oxide nanofluid inside grooved enclosure. Int. Commun. Heat Mass Transf. 130, 105795 (2021)

    Article  Google Scholar 

  50. Jamshed, W.; Sirin, C.; Selimefendigil, F.; Shamshuddin, M.D.; Altowairqi, Y.; Eid, M.R.: Thermal characterization of coolant maxwell type nanofluid flowing in parabolic trough solar collector (PTSC) used inside solar powered ship application. Coatings 11(12), 1552 (2021)

    Article  Google Scholar 

  51. Jamshed, W.; Mohd Nasir, N.A.A.; Qureshi, M.A.; Shahzad, F.; Banerjee, R.; Eid, M.R.; Nisar, K.S.; Ahmad, S.: Dynamical irreversible processes analysis of Poiseuille magneto-hybrid nanofluid flow in microchannel: a novel case study. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1985185

    Article  Google Scholar 

  52. Hussain, S.M., Goud, B.S., Madheshwaran, P., Jamshed, W., Pasha, A.A., Safdar, R., Arshad, M., Ibrahim, R.W., Ahmad, M.K.: Effectiveness of nonuniform heat generation (sink) and thermal characterization of a Carreau fluid flowing across a nonlinear elongating cylinder: a numerical study. ACS omega (2022)

  53. Pasha, A.A.; Islam, N.; Jamshed, W.; Alam, M.I.; Jameel, A.G.A.; Juhany, K.A.; Alsulami, R.: Statistical analysis of viscous hybridized nanofluid flowing via Galerkin finite element technique. Int. Commun. Heat Mass Transfer 137, 106244 (2022)

    Article  Google Scholar 

  54. Hussain, S.M.; Jamshed, W.; Pasha, A.A.; Adil, M.; Akram, M.: Galerkin finite element solution for electromagnetic radiative impact on viscid Williamson two-phase nanofluid flow via extendable surface. Int. Commun. Heat Mass Transf. 137, 106243 (2022)

    Article  Google Scholar 

  55. Shahzad, F.; Jamshed, W.; Safdar, R.; Nasir, N.A.A.M.; Eid, M.R.; Alanazi, M.M.; Zahran, H.Y.: Thermal valuation and entropy inspection of second-grade nanoscale fluid flow over a stretching surface by applying Koo–Kleinstreuer–Li relation. Nanotechnol. Rev. 11(1), 2061–2077 (2022)

    Article  Google Scholar 

  56. Jamshed, W.; Eid, M.R.; Safdar, R.; Pasha, A.A.; Isa, S.S.P.M.; Adil, M.; Rehman, Z.; Weera, W.: Solar energy optimization in solar-HVAC using Sutterby hybrid nanofluid with Smoluchowski temperature conditions: a solar thermal application. Sci. Rep. 12, 11484 (2022)

    Article  Google Scholar 

  57. Akgül, E.K.; Akgül, A.; Jamshed, W.; Rehman, Z.; Nisar, K.S.; Alqahtani, M.S.; Abbas, M.: Analysis of respiratory mechanics models with different kernels, Open. Physics 20, 609–615 (2022)

    Google Scholar 

  58. Jamshed, W.; Safdar, R.; Rehman, Z.; Lashin, M.M.; Ehab, M.; Moussa, M.; Rehman, A.: Computational technique of thermal comparative examination of Cu and Au nanoparticles suspended in sodium alginate as Sutterby nanofluid via extending PTSC surface. J. Appl. Biomater. Funct. Mater. 20, 22808000221104004 (2022)

    Google Scholar 

  59. Dhange, M.; Sankad, G.; Safdar, R.; Jamshed, W.; Eid, M.R.; Bhujakkanavar, U.; Gouadria, S.; Chouikh, R.: A mathematical model of blood flow in a stenosed artery with post-stenotic dilatation and a forced field. Plos one 17(7), e0266727 (2022)

    Article  Google Scholar 

  60. Akram, M.; Jamshed, W.; Goud, B.S.; Pasha, A.A.; Sajid, T.; Rahman, M.M.; Arshad, M.; Weera, W.: Irregular heat source impact on Carreau nanofluid flowing via exponential expanding cylinder: a thermal case study. Case Studies Thermal Eng. 36, 102190 (2022)

    Article  Google Scholar 

  61. Shahzad, F.; Jamshed, W.; Ahmad, A.; Safdar, R.; Mahtab Alam, M.; Ullah, I.: Efficiency evaluation of solar water-pump using nanofluids in parabolic trough solar collector: 2nd order convergent approach. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2083265

    Article  Google Scholar 

Download references

Funding

There has been no financial support to carry out this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Wasim Jamshed.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, K., Ahmad, A., Ahmad, S. et al. A Numerical Approach for Analyzing The Electromagnetohydrodynamic Flow Through a Rotating Microchannel. Arab J Sci Eng 48, 3765–3781 (2023). https://doi.org/10.1007/s13369-022-07222-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07222-5

Keywords

Navigation