Skip to main content
Log in

A theoretical description of the first-forbidden \(\beta \)-decay transitions within Pyatov’s restoration method

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We describe the first-forbidden beta transitions by using Pyatov’s restoration method within the framework of proton–neutron quasiparticle random phase approximation (pn-QRPA). A detailed formalism related to how to obtain the energies and wave functions of the first-forbidden excitations is clearly given in the present work. A comparison of the calculated results for various nuclei with the corresponding experimental data is given to demonstrate an application of the present approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J J Cowan and F K Thielemann, Phys. Today 57, 47 (2004)

    Article  Google Scholar 

  2. I N Borzov, Nucl. Phys. A 777, 645 (2006)

    Article  ADS  Google Scholar 

  3. J-Un Nabi, Adv. Space Res. 46, 1191 (2010)

  4. C L Bai et al, Phys. Rev. C 83, 054316 (2011)

    Article  ADS  Google Scholar 

  5. J Suhonen and O Civitarese, Phys. Rep. 300, 123 (1998)

    Article  ADS  Google Scholar 

  6. J Suhonen, Nucl. Phys. A 864, 63 (2011)

    Article  ADS  Google Scholar 

  7. A Bobyk, W A Kaminski and P Zareba, Nucl. Phys. A 669, 221 (2000)

    Article  ADS  Google Scholar 

  8. A A Raduta, C M Raduta and A Escuderos, arXiv:nucl-th/0412104v1 (2004)

  9. P Vogel and M R Zirnbauer, Phys. Rev. Lett. 57, 3148 (1986)

    Article  ADS  Google Scholar 

  10. O Civitarese, A Faessler and T Tomoda, Phys. Lett. B 194, 11 (1987)

    Article  ADS  Google Scholar 

  11. T Tomoda and A Faessler, Phys. Lett. B 199, 475 (1987)

    Article  ADS  Google Scholar 

  12. J Engel, P Vogel and M R Zirnbauer, Phys. Rev. C 37, 731 (1988)

    Article  ADS  Google Scholar 

  13. K Muto and H V Klapdor, Phys. Lett. B 201, 420 (1988)

    Article  ADS  Google Scholar 

  14. J Suhonen, T Taigel and A Faessler, Nucl. Phys. A 486, 91 (1988)

    Article  ADS  Google Scholar 

  15. K Muto, E Bender and H V Klapdor, Z. Phys. A 334, 187 (1989)

  16. G Pantis et al, J. Phys. G 18, 605 (1992)

    Article  ADS  Google Scholar 

  17. J Engel et al, Phys. Lett. B 208, 187 (1988)

    Article  ADS  Google Scholar 

  18. J Hirsch and F Krmpotic, Phys. Rev. C 41, 792 (1990)

    Article  ADS  Google Scholar 

  19. A Staudt, T T S Kuo and H V Klapdor-Kleingrothaus, Phys. Rev. C 46, 871 (1992

    Article  ADS  Google Scholar 

  20. F Krmpotic, Phys. Rev. C 48, 1452 (1993)

    Article  ADS  Google Scholar 

  21. S S Hsiao, Y Tzeng and T T S Kuo, Phys. Rev. C 49, 2233 (1994)

    Article  ADS  Google Scholar 

  22. M K Cheoun et al, Prog. Part. Nucl. Phys. 32, 315 (1994)

    Article  ADS  Google Scholar 

  23. O Civitarese and J Suhonen, Nucl. Phys. A 607, 152 (1996)

    Article  ADS  Google Scholar 

  24. J Suhonen et al, Phys. Rev. C 55, 714 (1997)

    Article  ADS  Google Scholar 

  25. O Civitarese and J Suhonen, Nucl. Phys. A 653, 321 (1999)

    Article  ADS  Google Scholar 

  26. F Simkovic, L Pacearescu and A Faessler, Nucl. Phys. A 733, 321 (2004)

    Article  ADS  Google Scholar 

  27. A A Raduta et al, Phys. Rev. C 69, 064321 (2004)

    Article  ADS  Google Scholar 

  28. V A Rodin, M H Urin and A Faessler, Nucl. Phys. A 747, 295 (2005)

    Article  ADS  Google Scholar 

  29. R Alvarez-Rodriguez et al, Prog. Part. Nucl. Phys. 57, 251 (2006)

    Article  ADS  Google Scholar 

  30. M S Yousef et al, Nucl. Phys. B: Proc. Suppl. 188, 56 (2009)

    Article  ADS  Google Scholar 

  31. M S Yousef et al, Phys. Rev. C 79, 014314 (2009)

    Article  ADS  Google Scholar 

  32. O Moreno et al, J. Phys. G: Nucl. Part. Phys. 36, 015106 (2009)

    Article  ADS  Google Scholar 

  33. C D Konti, F Krmpotic and B V Carlson, arXiv:1202.3511v1 [nucl-th] (2012)

  34. L Arisoy and S Unlu, Nucl. Phys. A 883, 35 (2012)

    Article  ADS  Google Scholar 

  35. S Unlu, Phys. Scr. 87, 045202 (2013)

    Article  ADS  Google Scholar 

  36. J Suhonen and O Civitarese, Nucl. Phys. A 924, 1 (2014)

    Article  ADS  Google Scholar 

  37. S Unlu and N Cakmak, Nucl. Phys. A 939, 13 (2015)

    Article  ADS  Google Scholar 

  38. J -Un Nabi, N Cakmak and Z Iftikhar, Eur. Phys. J. A 52, 1, 2016.

  39. J -Un Nabi et al, Nucl. Phys. A 957, 1 (2017)

  40. S Unlu, N Cakmak and C Selam, Nucl. Phys. A 957, 491 (2017)

    Article  ADS  Google Scholar 

  41. S Unlu, N Cakmak and C Selam, Nucl. Phys. A 970, 379 (2018)

    Article  ADS  Google Scholar 

  42. S Cakmak and N Cakmak, Nucl. Phys. A 1015, 122287 (2021)

    Article  Google Scholar 

  43. Q Zheng et al, Nucl. Phys. Rev. 38, 361 (2021)

    Google Scholar 

  44. H A Aygör et al, Int. J. Mod. Phys. E 30, 2150011 (2021)

    Article  ADS  Google Scholar 

  45. J-Un Nabi et al, Nucl. Phys. A 1015, 122278 (2021)

  46. S Unlu and N Cakmak, Act. Phys. Pol. B 53, 3 (2022)

    Google Scholar 

  47. P Möller, B Pfeiffer and K L Kratz, Phys. Rev. C 67, 055802 (2003)

    Article  ADS  Google Scholar 

  48. I N Borzov, Phys. At. Nucl. 79, 910 (2016)

    Article  Google Scholar 

  49. T Marketin, L Huther and G Martinez-Pinedo, Phys. Rev. C 93, 025805 (2016)

    Article  ADS  Google Scholar 

  50. M T Mustonen and J Engel, Phys. Rev. C 93, 014304 (2016)

    Article  ADS  Google Scholar 

  51. E M Ney, J Engel, T Li and N Schunck, Phys. Rev. C 102, 034326 (2020)

    Article  ADS  Google Scholar 

  52. N I Pyatov and D I Salamov, Nucleonica 22, 127 (1977)

    Google Scholar 

  53. O Civitarese and M C Licciardo, Phys. Rev. C 38, 967 (1988)

    Article  ADS  Google Scholar 

  54. O Civitarese and M C Licciardo, Phys. Rev. C 41, 1778 (1990)

    Article  ADS  Google Scholar 

  55. O Civitarese, A Faessler and M C Licciardo, Nucl. Phys. A 542, 221 (1992)

    Article  ADS  Google Scholar 

  56. E Guliyev et al, Phys. Lett. B 532, 173 (2002)

    Article  ADS  Google Scholar 

  57. E Guliyev, A A Kuliev and F Ertugral, Eur. Phys. J. A 39, 323 (2009)

    Article  ADS  Google Scholar 

  58. F Ertugral et al, Cent. Eur. J. Phys. 7, 731 (2009)

    Google Scholar 

  59. H Quliyev et al, Appl. Sci. Rep. 14, 199 (2016)

    Google Scholar 

  60. T Babacan et al, J. Phys. G: Nucl. Part. Phys. 30, 759 (2004)

    Article  ADS  Google Scholar 

  61. A Kucukbursa et al, Pramana – J. Phys. 63, 947 (2004)

    Article  ADS  Google Scholar 

  62. D I Salamov et al, Pramana – J. Phys. 66, 1105 (2006)

    Article  ADS  Google Scholar 

  63. A E Calik, M Gerceklioglu and D I Salamov, Z. Naturforsch. A 64 , 865 (2009)

    Article  ADS  Google Scholar 

  64. A E Calik, M Gerceklioglu and D I Salamov, Pramana – J. Phys. 79, 417 (2012)

    Article  ADS  Google Scholar 

  65. A E Calik, M Gerceklioglu and C Selam, Phys. At. Nucl. 76, 549 (2013)

    Article  Google Scholar 

  66. H A Aygör et al, Cent. Eur. J. Phys. 12, 490 (2014)

    Google Scholar 

  67. T Babacan, D I Salamov and A Kucukbursa, Phys. Rev. C 71, 037303 (2005)

    Article  ADS  Google Scholar 

  68. D I Salamov, S Unlu and N Cakmak, Pramana – J. Phys. 69, 369 (2007)

    Article  ADS  Google Scholar 

  69. V G Soloviev, Theory of complex nuclei (Pergamon Press, New York, 1976)

    Google Scholar 

  70. A A Bohr and B R Mottelson, Nuclear structure (Benjamin, New York, Amsterdam, 1969)

    MATH  Google Scholar 

  71. P Möller and J R Nix, Nucl. Phys. A 536, 20 (1992)

    Article  ADS  Google Scholar 

  72. W Greiner and J A Maruhn, Nuclear models (Springer-Verlag, Berlin, Heidelberg, 1996)

    Book  MATH  Google Scholar 

  73. D A Varshalovich, A N Moskalev and V K Khersonskii, Quantum theory of angular momentum (World Scientific Publishing, Singapore, 1988)

    Book  Google Scholar 

  74. H Akimune et al, Nucl. Phys. A 569, 245c (1994)

    Article  ADS  Google Scholar 

  75. S K Basu, G Mukherjee and A A Sonzogni, Nucl. Data Sheets 111, 2555 (2010)

    Article  ADS  Google Scholar 

  76. E Browne and J K Tuli, Nucl. Data Sheets 108, 2173 (2007)

    Article  ADS  Google Scholar 

  77. P K Joshiör et al, Nucl. Data Sheets 138, 1 (2016)

    Article  ADS  Google Scholar 

  78. F G Kondev, Nucl. Data Sheets 166, 1 (2020)

    Article  ADS  Google Scholar 

  79. J Chen and F G Kondev, Nucl. Data Sheets 126, 373 (2015)

    Article  ADS  Google Scholar 

  80. E A Mccutchan et al, Nucl. Data Sheets 114, 661 (2013)

    Article  ADS  Google Scholar 

  81. V R Vanin et al, Nucl. Data Sheets 108, 2393 (2007)

    Article  ADS  Google Scholar 

  82. H Xiaolong and Z Chunmei, Nucl. Data Sheets 104, 283 (2005)

    Article  Google Scholar 

  83. B Singh, Nucl. Data Sheets 108, 79 (2007)

    Article  ADS  Google Scholar 

  84. F G Kondev, Nucl. Data Sheets 187, 355 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The present work is supported by the Scientific and Technological Research Council of Turkey under the grant number 121F206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Ünlü.

Additional information

C. Selam: Retired from Muş Alparslan University, Muş, Türkiye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünlü, S., Bİrcan, H., Çakmak, N. et al. A theoretical description of the first-forbidden \(\beta \)-decay transitions within Pyatov’s restoration method. Pramana - J Phys 97, 121 (2023). https://doi.org/10.1007/s12043-023-02601-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02601-5

Keywords

PACS Nos

Navigation