Skip to main content
Log in

Self-consistent approach to beta decay and delayed neutron emission

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A brief overview of the recent self-consistent studies of nuclear beta decay is given including the relativistic quasi-particle random-phase approximation or QRPA and Finite Amplitude Method. The results of our self-consistent continuum QRPA model based on the density functional description of the ground states are presented. They are in a good agreement with the recent experimental beta-decay half-lives and delayed neutron emission branchings for the nuclei approaching (and beyond) the neutron closed shells N = 50 near 78Ni and N = 82 near 132Sn. A comparison with the recent calculations from relativistic QRPA model, Finite Amplitude Method and semi-microscopic finite-range droplet model is performed. An importance of the quasi-particle phonon coupling is stressed for the description of the beta decay and delayed multi-neutron emission rates. A strategy of extending our approach to the deformed nuclei and the open problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Otsuka, T. Suzuki, R. Fujimoto, et al., Phys. Rev. Lett. 95, 232502 (2005)

    Article  ADS  Google Scholar 

  2. T. Otsuka and T. Suzuki, Few-Body Syst. 54, 891 (2013).

    Article  ADS  Google Scholar 

  3. V. G. Soloviev, Theory of Atomic Nuclei. Quasiparticles and Phonons (Energoatomizdat, Moscow, 1989) [in Russian].

    Google Scholar 

  4. A. B. Migdal, Finite Fermi-System Theory, 2nd ed. (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  5. V. A. Khodel and E. E. Saperstein, Phys. Rept. 92, 183 (1982).

    Article  ADS  Google Scholar 

  6. S. A. Fayans and V. A. Khodel, JETP Lett. 17, 444 (1973).

    ADS  Google Scholar 

  7. A. V. Smirnov, S. V. Tolokonnikov, and S. A. Fayans, Sov. J. Nucl. Phys. 48, 995 (1988).

    Google Scholar 

  8. I. N. Borzov, S. A. Fayans, E. Krömer, and D. Zawischa, Z. Phys. A 355, 117 (1996).

    ADS  Google Scholar 

  9. S. A. Fayans, JETP Lett. 68, 169 (1998).

    Article  ADS  Google Scholar 

  10. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  11. I. N. Borzov, Phys. Rev. C 67, 025802 (2003).

    Article  ADS  Google Scholar 

  12. I. N. Borzov, J. Cuenca-Garcia, K. Langanke, et al., Nucl. Phys. A 814, 159 (2008).

    Article  ADS  Google Scholar 

  13. I. N. Borzov, Nucl. Phys. A 777, 645 (2006).

    Article  ADS  Google Scholar 

  14. J. A. Winger et al., Phys. Rev. Lett. 102, 142502 (2009).

    Article  ADS  Google Scholar 

  15. M. Madurga et al., Phys. Rev. Lett. 109, 112501 (2012).

    Article  ADS  Google Scholar 

  16. K. Mernik et al., Phys. Rev. Lett. 111, 132502 (2013).

    Article  ADS  Google Scholar 

  17. G. Lorusso et al., Phys. Rev. Lett. 114, 192501 (2015).

    Article  ADS  Google Scholar 

  18. J. Winger et al., Phys. Rev. C 81, 044303 (2010).

    Article  ADS  Google Scholar 

  19. G. Audi et al. (NUBASE 2012), Chin. Phys. C 36, 12 (2012). http://www.nndc.bnl.gov.

    ADS  Google Scholar 

  20. I. Nakatsukasa et al., Phys. Rev. C76, 024318 (2007).

    ADS  Google Scholar 

  21. Q. Zhi, E. Caurier, J. Cuenca-Garcia, et al., Phys. Rev. C 87, 025803 (2013).

    Article  ADS  Google Scholar 

  22. N. Paar, T. Marketin, D. Vale, and D. Vretnar, Int. J. Mod. Phys. E 24, 1541004 (2015)

    Article  ADS  Google Scholar 

  23. T. Marketin, L. Huther, and G. Martinez-Pinedo, Phys. Rev. C 93, 025805 (2016).

    Article  ADS  Google Scholar 

  24. M. T. Mustonen, T. Shafer, Z. Zenginerler, and J. Engel., Phys. Rev. C 90, 024308 (2014)

    Article  ADS  Google Scholar 

  25. M. T. Mustonen and J. Engel, Phys. Rev. C 93, 014304 (2016).

    Article  ADS  Google Scholar 

  26. A. P. Severyukhin, V. V. Voronov, I. N. Borzov, et al., J. Phys. Conf. Ser. 580, 012051 (2015).

    Article  Google Scholar 

  27. P. Möller, B. Pfeiffer, K.-L. Kratz et al., Phys. Rev. C 67, 055802 (2003).

    Article  ADS  Google Scholar 

  28. P. F. Bortignon, R. A. Broglia, G. F. Bertsch, and J. Pachelo, Nucl. Phys. A 460, 149 (1986).

    Article  ADS  Google Scholar 

  29. N. V. Gnezdilov, I. N. Borzov, E. E. Saperstein, and S. V. Tolokonnikov, Phys. Rev. C 89, 034304 (2014).

    Article  ADS  Google Scholar 

  30. S. V. Tolokonnikov, I. N. Borzov, M. Kortelainen, et al., J. Phys. G 42, 075102 (2015).

    Article  ADS  Google Scholar 

  31. E. K. Warburton, Phys. Rev. C 44, 233 (1991)

    Article  ADS  Google Scholar 

  32. E. K. Warburton and I. S. Towner, Phys. Rept. 242, 103 (1994).

    Article  ADS  Google Scholar 

  33. E. E. Saperstein, S. V. Tolokonnikov, Phys. Atom. Nucl. 74, 1277 (2011).

    Article  ADS  Google Scholar 

  34. I. N. Borzov, E. E. Saperstein, S. V. Tolokonnikov, et al., Eur. Phys. J. A 45, 159 (2010).

    Article  ADS  Google Scholar 

  35. Z. Niu et al., Phys. Lett. B 723, 172 (2013).

    Article  ADS  Google Scholar 

  36. R. Caballero-Folch, C. Domingo-Pardo, J. Agramunt et al., arXiv: 1511.01296.

  37. M. Bender, J. Dobaczewski, J. Engel, and W. Nazarewicz, Phys. Rev. C 65, 054322 (2002).

    Article  ADS  Google Scholar 

  38. M. V. Stoitsov, N. Schunck, M. Kortelainen, et al., Comput. Phys. Commun. 184, 1592 (2013).

    Article  ADS  Google Scholar 

  39. K. Sieja and F. Nowacki, Phys. Rev. C 81, 061303(R) (2010).

    Article  ADS  Google Scholar 

  40. J. J. Cuenca-Garcıa, G. Martınez-Pinedo, K. Langanke, F. Nowacki, and I. Borzov, Eur. Phys. J. A 34, 99 (2007).

    Article  ADS  Google Scholar 

  41. Yu. P. Gangrsky et al., Preprint No. P3-2004-125, JINR (Dubna, 2004).

    Google Scholar 

  42. M. F. Alshudifat, R. Grzywacz, M. Madurga, et al., Phys. Rev. C 93, 044325 (2016).

    Article  ADS  Google Scholar 

  43. B. A. Brown and W. D. M. Rae, Nucl. Data Sheets 120, 115 (2014). http://www.garsington.eclipse.co.uk.

    Article  ADS  Google Scholar 

  44. M. Martini, S. Peru, and S. Goriely, Phys. Rev. C 89, 044306 (2014).

    Article  ADS  Google Scholar 

  45. K. Yoshida, Prog. Theor. Exp. Phys. 2013, 113D02 (2013).

    Article  Google Scholar 

  46. I. N. Borzov, EPJWeb Conf. 38, 12002 (2012).

    Article  Google Scholar 

  47. K. T. Flanagan et al., Phys. Rev. Lett. 103, 142501 (2019).

    Article  ADS  Google Scholar 

  48. P. Hosmer, H. Schatz, A. Aprahamian, et al., Phys. Rev. C 82, 025806 (2010).

    Article  ADS  Google Scholar 

  49. S. Goriely. http://www-astro.ulb.ac.be/bruslib/nucdata/.

  50. R. Lozeva, H. Naidja, F. Nowacki, et al., Phys. Rev. C 93, 014316 (2016).

    Article  ADS  Google Scholar 

  51. C.-B. Moon et al., arXiv: 1512. 07324.

  52. V. I. Goldansky, Nucl. Phys. 19, 482 (1960).

    Article  Google Scholar 

  53. Yu. S. Lutostansky, I. V. Panov, and V. K. Sirotkin, Phys. Lett. B 161, 9 (1985).

    Article  ADS  Google Scholar 

  54. I. N. Borzov, E. E. Saperstein, S. V. Tolokonnikov, and S. A. Fayans, Fiz. Elem. Chstits At. Yadra 12, 848 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Borzov.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzov, I.N. Self-consistent approach to beta decay and delayed neutron emission. Phys. Atom. Nuclei 79, 910–923 (2016). https://doi.org/10.1134/S1063778816060041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816060041

Navigation