Skip to main content
Log in

Second-forbidden nonunique \(\beta ^-\) decays of \(^{59,60}\)Fe:possible candidates for \(g_{\mathrm{A}}\) sensitive electron spectral-shape measurements

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this work, we present a theoretical study of the electron spectral shapes for the second-forbidden nonunique \(\beta ^-\)-decay transitions \(^{59}\text {Fe}(3/2^-)\rightarrow \,^{59}\text {Co}(7/2^-)\) and \(^{60}\text {Fe}(0^+)\rightarrow \,^{60}\text {Co}(2^+)\) in the framework of the nuclear shell model. We have computed the involved wave functions by carrying out a complete \(0\hbar \omega \) calculation in the full fp model space using the KB3G and GXPF1A effective interactions. When compared with the available data, these interactions predict the low-energy spectra and electromagnetic properties of the involved nuclei quite successfully. This success paves the way for the computations of the \(\beta \)-decay properties, and comparison with the available data. We have computed the electron spectral shapes of the mentioned decay transitions as functions of the value of the weak axial coupling \(g_{\mathrm{A}}\). By comparing these computed shapes with the measured spectral shapes allows then to extract the effective value of \(g_{\mathrm{A}}\) for these decay transitions. This procedure, coined the spectrum-shape method (SSM) in several earlier studies, complements the method of determining the value of \(g_{\mathrm{A}}\) by reproducing the (partial) half-lives of decay transitions. Here we have enhanced the original SSM by constraining the value of the relativistic vector matrix element, \(^V{\mathcal {M}}^{(0)}_{KK-11}\), using the conserved vector-current hypothesis (CVC) as a starting point. We hope that this finding would be a strong incentive to measure the spectral shapes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is the theoretical work all results we have already reported.]

References

  1. K. Zuber, Neutrino Physics (Institue of Physics Publishing Ltd., London, 2004)

    Book  Google Scholar 

  2. E.D. Commins, Weak Interactions (McGraw-Hill, New York, 2007)

    Google Scholar 

  3. J. Suhonen, O. Civitarese, Weak-interaction and nuclear-structure aspects of nuclear double beta decay. Phys. Rep. 300, 123 (1998)

    Article  ADS  Google Scholar 

  4. J. Maalampi, J. Suhonen, Neutrinoless double \(\beta ^+\)/EC decays. Adv. High Energy Phys. 2013, 505874 (2013)

    Article  Google Scholar 

  5. J. Suhonen, Value of the axial-vector coupling strength in \(\beta \) and \(\beta \beta \) decays: a review. Front. Phys. 5, 55 (2017)

    Article  Google Scholar 

  6. H. Ejiri, J. Suhonen, K. Zuber, Neutrino-nuclear responses for astro-neutrinos, single beta decays and double beta decays. Phys. Rep. 797, 1 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Ejiri, N. Soukouti, J. Suhonen, Spin-dipole nuclear matrix elements for double beta decays and astro-neutrinos. Phys. Lett. B 729, 27 (2014)

    Article  ADS  Google Scholar 

  8. H. Ejiri, J. Suhonen, GT neutrino-nuclear responses for double beta decays and astro neutrinos. J. Phys. G: Nucl. Part. Phys. 42, 055201 (2015)

    Article  ADS  Google Scholar 

  9. J. Suhonen, O. Civitarese, Probing the quenching of \(g_A\) by single and double beta decays. Phys. Lett. B 725, 153 (2013)

    Article  ADS  Google Scholar 

  10. J. Suhonen, O. Civitarese, Single and double beta decays in the \(A=100\), \(A=116\) and \(A=128\) triplets of isobars. Nucl. Phys. A 924, 1 (2014)

    Article  ADS  Google Scholar 

  11. A. Faessler, G.L. Fogli, E. Lisi, V. Rodin, A.M. Rotunno, F. \(\check{\text{S}}\)imkovic, Overconstrained estimates of neutrinoless double beta decay within the QRPA. J. Phys. G: Nucl. Part. Phys. 35, 075104 (2008)

  12. D.S. Delion, J. Suhonen, Effective axial-vector strength and \(\beta \)-decay systematics. Eur. Phys. Lett. 107, 52001 (2014)

    Article  ADS  Google Scholar 

  13. P. Pirinen, J. Suhonen, Systematic approach to \(\beta \) and \(2\nu \beta \beta \) decays of mass \(A=100-136\) nuclei. Phys. Rev. C 91, 054309 (2015)

    Article  ADS  Google Scholar 

  14. F.F. Deppisch, J. Suhonen, Statistical analysis of \(\beta \) decays and the effective value of \({g}_{A}\) in the proton-neutron quasiparticle random-phase approximation framework. Phys. Rev. C 94, 055501 (2016)

    Article  ADS  Google Scholar 

  15. B.H. Wildenthal, M.S. Curtin, B.A. Brown, Predicted features of the beta decay of neutron-rich \(\rm sd\)-shell nuclei. Phys. Rev. C 28, 1343 (1983)

    Article  ADS  Google Scholar 

  16. G. Martínez-Pinedo, A. Poves, E. Caurier, A.P. Zuker, Effective \({g}_{A}\) in the \(\rm pf\) shell. Phys. Rev. C 53, R2602 (1996)

    Article  ADS  Google Scholar 

  17. E. Caurier, F. Nowacki, A. Poves, Shell Model description of the \(\beta \beta \) decay \(^{136}\)Xe. Phys. Lett. B 711, 62 (2012)

    Article  ADS  Google Scholar 

  18. V. Kumar, P.C. Srivastava, H. Li, Nuclear \(\beta ^-\)-decay half-lives for \(fp\) and \(fpg\) shell nuclei. J. Phys. G: Nucl. Part. Phys. 43, 105104 (2016)

  19. V. Kumar, P.C. Srivastava, Shell model description of Gamow-Teller strengths in \(pf\)-shell nuclei. Eur. Phys. J. A 52, 181 (2016)

    Article  ADS  Google Scholar 

  20. A. Saxena, P.C. Srivastava, T. Suzuki, Ab initio calculations of Gamow-Teller strengths in the \(sd\) shell. Phys. Rev. C 97, 024310 (2018)

    Article  ADS  Google Scholar 

  21. A. Kumar, P.C. Srivastava , T. Suzuki, Shell model results for nuclear \(\beta ^-\)-decay properties of sd-shell nuclei. Prog. Theo. Expt. Phys. 2020, 033D01 (2020)

  22. J. Kostensalo, J. Suhonen, Consistent large-scale shell-model analysis of the two-neutrino \(\beta \beta \) and single \(\beta \) branchings in \(^{48}\)Ca and \(^{96}\)Zr. Phys. Lett. B 802, 135192 (2020)

    Article  Google Scholar 

  23. J. Barea, J. Kotila, F. Iachello, \(0\nu \beta \beta \) and \(2\nu \beta \beta \) nuclear matrix elements in the interacting boson model with isospin restoration. Phys. Rev. C 91, 034304 (2015)

    Article  ADS  Google Scholar 

  24. J. Barea, J. Kotila, F. Iachello, Nuclear matrix elements for double-\(\beta \) decay. Phys. Rev. C 87, 014315 (2015)

    Article  ADS  Google Scholar 

  25. N. Yoshida, F. Iachello, Two-neutrino double-\(\beta \) decay in the interacting boson-fermion model. Prog. Theo. Expt. Phys. 2013, 043D01 (2013)

  26. J. Suhonen, J. Kostensalo, Double \(\beta \) decay and axial strength. Front. Phys. 7, 29 (2019)

    Article  Google Scholar 

  27. E.K. Warburton, First-forbidden \(\beta \) decay in the lead region and mesonic enhancement of the weak axial curren. Phys. Rev. C 44, 233 (1991)

    Article  ADS  Google Scholar 

  28. J. Kostensalo, J. Suhonen, Mesonic enhancement of the weak axial charge and its effect on the half-lives and spectral shapes of first-forbidden \(J^+\leftrightarrow J^-\) decay. Phys. Lett. B 781, 480 (2018)

    Article  ADS  Google Scholar 

  29. S. Pastore, A. Baroni, J. Carlson, S. Gandolfi, S.C. Pieper, R. Schiavilla, R.B. Wiringa, Quantum Monte Carlo calculations of weak transitions in \(A=6-10\) nuclei. Phys. Rev. C 97, 022501(R) (2018)

  30. G.B. King, L. Andreoli, S. Pastore, M. Piarulli, R. Schiavilla, R.B. Wiringa, J. Carlson, S. Gandolfi, Chiral effective field theory calculations of weak transitions in light nuclei. Phys. Rev. C 102, 025501 (2020)

    Article  ADS  Google Scholar 

  31. P. Gysbers, G. Hagen, J.D. Holt, G.R. Jansen, T.D. Morris, P. Navrátil, T. Papenbrock, S. Quaglioni, A. Schwenk, S.R. Stroberg, K.A. Wendt, Discrepancy between experimental and theoretical \(\beta \)-decay rates resolved from first principles. Nat. Phys. 15, 428 (2019)

    Article  Google Scholar 

  32. J. Engel, J. Menéndez, Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review. Rep. Prog. Phys. 80, 046301 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Haaranen, P.C. Srivastava, J. Suhonen, Forbidden nonunique \(\beta \) decays and effective values of weak coupling constants. Phys. Rev. C 93, 034308 (2016)

    Article  ADS  Google Scholar 

  34. M. Haaranen, J. Kotila, J. Suhonen, Spectrum-shape method and the next -to-leading-order terms of the \(\beta \)-decay shape factor. Phys. Rev. C 95, 024327 (2017)

    Article  ADS  Google Scholar 

  35. P. Belli, R. Bernabei, N. Bukilic, F. Cappella, R. Cerulli, C.J. Dai, F.A. Danevich, J.R. de Laeter, A. Incicchitti, V.V. Kobychev, S.S. Nagorny, S. Nisi, F. Nozzoli, D.V. Poda, D. Prosperi, V.I. Tretyak, S.S. Yurchenko, Investigation of \(\beta \) decay of \(^{113}\rm Cd\). Phys. Rev. C 76, 064603 (2007)

    Article  ADS  Google Scholar 

  36. J. Kostensalo, M. Haaranen, J. Suhonen, Electron spectra in forbidden \(\beta \) decays and the quenching of the weak axial-vector coupling constant \(\text{ g}_A\). Phys. Rev. C 95, 044313 (2017)

  37. J. Kostensalo, J. Suhonen, \(\text{ g}_A\)-driven shapes of electron spectra of forbidden \(\beta \) decays in the nuclear shell model. Phys. Rev. C 96, 024317 (2017)

    Article  ADS  Google Scholar 

  38. A. Kumar, P.C. Srivastava, J. Kostensalo, J. Suhonen, Second-forbidden nonunique \({\beta }^{-}\) decays of \(^{24} \text{ Na }\) and \(^{36} \text{ Cl }\) assessed by the nuclear shell model. Phys. Rev. C. 101, 064304 (2020)

  39. O.S. Kirsebom et al., Measurement of the \(2^+\rightarrow {0^+}\) ground-state transition in the \(\beta \) decay of \(^{20}\)F. Phys. Rev. C 100, 065805 (2019)

    Article  ADS  Google Scholar 

  40. O.S. Kirsebom et al., Discovery of an exceptionally strong \(\beta \)-decay transition of \(^{20}\)F and implications for the fate of intermediate-mass stars. Phys. Rev. Lett. 123, 262701 (2019)

    Article  ADS  Google Scholar 

  41. M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, New effective interaction for \(pf\)-shell nuclei and its implications for the stability of the \(N=Z=28 \) closed core. Phys. Rev. C 69, 034335 (2004)

    Article  ADS  Google Scholar 

  42. M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Shell-model description of neutron-rich \(pf\)-shell nuclei with a new effective interaction GXPF1. Eur. Phys. J. A 25, 499 (2005)

    Article  Google Scholar 

  43. A. Poves, J. S\(\acute{\text{ a }}\)nchez-Solano, E. Caurier, F. Nowacki, Shell model study of the isobaric chains A = 50, A = 51 and A = 52. Nucl. Phys. A 694 157 (2001)

  44. H. Behrens , W. B\(\ddot{\text{ u }}\)hring, Electron Radial Wave Functions and Nuclear Beta-Decay (Clarendon Press, Hoboken, 1982)

  45. H.F. Schopper, Weak Interaction and Nuclear Beta Decay (North-Holland, Amsterdam, 1966)

    Google Scholar 

  46. M. T. Mustonen, M. Aunola, J. Suhonen, Theoretical description of the fourth-forbidden non-unique \(\beta \) decays of \(^{113}\)Cd and \(^{115}\)In. Phys. Rev. C 73, 054301 (2006) [Erratum Phys. Rev. C 76 019901 (2007)]

  47. J. Suhonen, From Nucleons to Nucleus: Concept of Microscopic Nuclear Theory (Springer, Berlin, 2007)

    Book  Google Scholar 

  48. C. Patrignani and Particle Data Group, Review of Particle Physics. Chin. Phys. C 40, 100001 (2016)

  49. B.A. Brown, W.D.M. Rae, The shell-model code NuShellX@MSU. Nucl. Data Sheets 120, 115 (2014)

    Article  ADS  Google Scholar 

  50. NNDC, https://www.nndc.bnl.gov/ensdf/ (2020)

  51. L. Bodenstein-Dresler et al., (COBRA Collaboration), Quenching of \(g_{{\rm A}}\) deduced from the \(\beta \)-spectrum shape of \(^{113}\)Cd measured with the COBRA experiment. Phys. Lett. B 800, 135092 (2020)

Download references

Acknowledgements

A. K. would like to thank the Ministry of Human Resource Development (MHRD), Government of India, for the financial support for his Ph.D. thesis work. P.C.S. acknowledges a research grant from SERB (India), CRG/2019/000556. J. S. has been partially supported by the academy of Finland under the academy project no. 318043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen C. Srivastava.

Additional information

Communicated by Kamila Sieja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Srivastava, P.C. & Suhonen, J. Second-forbidden nonunique \(\beta ^-\) decays of \(^{59,60}\)Fe:possible candidates for \(g_{\mathrm{A}}\) sensitive electron spectral-shape measurements. Eur. Phys. J. A 57, 225 (2021). https://doi.org/10.1140/epja/s10050-021-00540-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00540-6

Navigation