Skip to main content
Log in

Multi-shock and soliton solutions of the Burgers equation employing Darboux transformation with the help of the Lax pair

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The purpose of this article is to derive a class of multi-soliton solutions of the Burgers equation employing Darboux transformation with the help of the Lax pair. By means of an effective transformation, the Burgers equation is reduced to a suitable form, and accordingly, the Lax pair of the said equation is derived utilising the Ablowitz–Kaup–Newell–Segur (AKNS) approach. Thus, the integrability of the Burgers equation is confirmed. To find an effective solution for the Burgers equation, for the first time, we apply the Darboux transformation through the Lax pair and explore new types of one-soliton solutions and two-soliton solutions of the Burgers equation. These solutions provide some new features of the Burgers equation. To the best of our knowledge, this is the first study in which a parabolic type of structure is found in the Burgers system. Moreover, taking these solutions as the seed solution, higher-order multi-soliton solution can also be generated. Finally, some important three-dimensional plots of the wave solutions are presented to visualise the dynamics of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E Hosseinzadeh, A Barari, F Fouladi and G Davood Domairry, Therm. Sci. 14, 1101 (2010)

    Article  Google Scholar 

  2. K Vafai, Int. J. Heat. Fluid Flow 11, 254 (1990)

    Article  Google Scholar 

  3. S Raut, A Roy, K K Mondal, P Chatterjee and N M Chadha, Int. J. Appl. Comput. Math. 7, 1 (2021)

    Article  Google Scholar 

  4. A Saha, N Pal and P Chatterjee, Phys. Plasma 21, 102101 (2014)

    Article  ADS  Google Scholar 

  5. S Raut, K K Mondal, P Chatterjee and A Roy, SeMA J. 78, 571 (2021)

    Article  MathSciNet  Google Scholar 

  6. M Moshinsky, SIAM J. Appl. Math. 25, 193 (1973)

    Article  MathSciNet  Google Scholar 

  7. G Reinisch, Physica A 206, 229 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  8. D S Abrams and S Lloyd, Phys. Rev. Lett. 81, 3992 (1998)

    Article  ADS  Google Scholar 

  9. W C Thacker, J. Fluid Mech. 107, 499 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  10. S B Yoon and P L F Liu, J. Fluid Mech. 205, 397 (1989)

    Article  ADS  Google Scholar 

  11. J W Miles, J. Fluid Mech. 76, 251 (1976)

    Article  ADS  Google Scholar 

  12. U K Anoglu and C Synolakis, Phys. Rev. Lett. 97, 148501 (2006)

    Article  ADS  Google Scholar 

  13. G Li, H Rabitz, J Anos and Tóth, Chem. Eng. Sci. 49, 343 (1994)

    Article  Google Scholar 

  14. A C Atkinson and B Bogacka, Chemom. Intell. Lab. Syst. 61, 17 (2002)

    Article  Google Scholar 

  15. G B Whitham, Linear and nonlinear waves (John Wiley & Sons, New York, 1974)

    MATH  Google Scholar 

  16. H Bateman, Mon. Weather Rev. 43, 163 (1915)

    Article  ADS  Google Scholar 

  17. J M Burgers, Advances in applied mechanics edited by R Von Mises and T Von Karman (Academic, New York, 1948)

    Google Scholar 

  18. J M Burgers, A mathematical model illustrating the theory of turbulence (Elsevier, 1948)

  19. J M Burgers, The nonlinear diffusion equation (Reidel, Dordrecht-Holland, 1974)

    Book  MATH  Google Scholar 

  20. R S Zola, J C Dias, E K Lenzi, L R Evangelista, M K Lenzi and L R da Silva, Physica A 387, 2690 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. S Eule and R Friedrich, Phys. Lett. A 351, 238 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. J Lighthill, J. Acoust. Soc. Am. 61, 391 (1978)

    Google Scholar 

  23. Y Chen, E Fan and M Yuen, Phys. Lett. A 380, 9 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. A R Chowdhury, Painlevé analysis and its applications (CRC Press, Calcutta, 1999)

    Google Scholar 

  25. J Weiss, M Tabor and G Carnevale, J. Math. Phys. 24, 522 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  26. M Jimbo, M D Kruskal and T Miwa, Phys. Lett. A 92, 59 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  27. R Conte and M Musette, The Painlevé handbook (Springer, Cham, 2008)

    MATH  Google Scholar 

  28. S Singh and S S Ray, Mod. Phys. Lett. B 35, 2150464 (2021)

    Article  ADS  Google Scholar 

  29. S Singh and S S Ray, Int. J. Geom. Methods Mod. Phys. 19, 2250086 (2022)

  30. S Roy, S Raut, R R Kairi and P Chatterjee, Eur. Phys. J. Plus 137, 1 (2022)

    Google Scholar 

  31. A M Wazwaz, Nucl. Phys. B 954, 115009 (2020)

    Article  Google Scholar 

  32. W Hereman and A Nuseir, Math. Comput. Simul. 43, 13 (1997)

    Article  Google Scholar 

  33. G M Wei, Y T Gao, W Hu and C Y Zhang, The Eur. Phys. J. B 53, 343 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  34. Y Liu, Y T Gao, Z Y Sun and X Yu, Nonlinear Dyn. 66(4), 575 (2011)

    Article  Google Scholar 

  35. X Yu, Y T Gao, Z Y Sun and Y Liu, Nonlinear Dyn. 67(2), 1023 (2012)

    Article  Google Scholar 

  36. M Li, J M Xiao, M Wang, Y F Wang and B Tian, Naturforschung. A 68(3), 235 (2013)

    Article  Google Scholar 

  37. R Hirota, The direct method in soliton theory (Cambridge University Press, 2004)

  38. A C Scott, The nonlinear Universe: Chaos, emergence, life (Springer, 2007) p. 181

  39. S S Ray and S Singh, Math. Meth. Appl. Sci. 44, 14690 (2021)

    Article  Google Scholar 

  40. Z J Xiao, B Tian, H L Zhen, J Chai and X Y Wu, Waves Random Complex Media 27, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  41. J L Ji and Z N Zhu, J. Math. Anal. Appl. 453, 973 (2017)

    Article  MathSciNet  Google Scholar 

  42. R Hirota, Phys. Rev. Lett. 27, 1192 (1971)

    Article  ADS  Google Scholar 

  43. B Fornberg, Geophys. 52(4), 483 (1987)

    Article  Google Scholar 

  44. W Malfliet and W Hereman, Phys. Scr. 54, 563 (1996)

    Article  ADS  Google Scholar 

  45. M Alquran, K A Khaled and H Ananbeh, Stud. Math. Sci. 3, 1 (2011)

    Google Scholar 

  46. J H He and X H Wu, Chaos Solitons Fractals 30, 700 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  47. A M Wazwaz, Math. Comput. Model. 40, 499 (2004)

    Article  Google Scholar 

  48. X Wang and L Wang, Comput. Math. Appl. 75, 4201 (2018)

    Article  MathSciNet  Google Scholar 

  49. B Xue, F Li and H Wang, Appl. Math. Comput. 269, 326 (2015)

    MathSciNet  Google Scholar 

  50. D Saha, S Raut and P Chatterjee, Nonlinear Dyn. Appl.https://doi.org/10.1007/978-3-030-99792-2_98 (2022)

  51. L Ling, L C Zhao and B Guo, Nonlinearity 28, 3243 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  52. M I Bueno and F Marcellan, Linear Algebra Appl. 384, 215 (2004)

    Article  MathSciNet  Google Scholar 

  53. P G Estevez, J. Math. Phys. 40, 1406 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  54. V G Bagrov and B F Samsonov, Theor. Math. Phys. 104, 1051 (1995)

    Article  Google Scholar 

  55. H Z Liu and L X Zhang, Chin. Phys. B 27, 040202 (2018)

    Article  ADS  Google Scholar 

  56. X L Gai, Y T Gao, Z Y Sun, X Yu, Y Liu and D X Meng, J. Phys. A 43, 455205 (2010)

    Article  MathSciNet  Google Scholar 

  57. Y Zhang, J Li and Y N Lv, Ann. Phys. 323, 3059 (2008)

    Article  ADS  Google Scholar 

  58. S Friedlander and M M Vishik, Phys. Lett. A 148, 313 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  59. X W Guan, M S Wang and S D Yang, Nucl. Phys. B 485, 685 (1997)

    Article  ADS  Google Scholar 

  60. V B Matveev, Lett. Math. Phys. 3, 213 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  61. R Willox, T Tokihiro and J Satsuma, J. Math. Phys. 38, 6455 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  62. E V Doktorov and S B Leble, A dressing method in mathematical physics (Springer Science & Business Media, 2007)

  63. S Xu, J He and L Wang, J. Phys. Math. Theor. 44, 305203 (2011)

    Article  Google Scholar 

  64. Zhao, Qian and L Wu, Appl. Math. Lett. 67, 1 (2017)

  65. T Xiao and Y Zeng, J. Phys. A 37, 7143 (2004)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Raut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, D., Chatterjee, P. & Raut, S. Multi-shock and soliton solutions of the Burgers equation employing Darboux transformation with the help of the Lax pair. Pramana - J Phys 97, 54 (2023). https://doi.org/10.1007/s12043-023-02534-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02534-z

Keywords

PACS

Navigation