Skip to main content
Log in

Double-loop multivalue solitary waves and their collisions for a 2D KdV equation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The Korteweg–de Vries (KdV) equation can describe a weakly nonlinear long wave when its phase speed arrives a wave maximum with the infinite length in shallow water. In this paper, the investigation of a two-dimensional (2D) KdV equation is conducted using the double-function method. A unified solution for separating the variables is given based on the projective Riccati equation in the double-function method and its unified exponential-form solution, which covers many familiar solutions including \(\sinh ,\cosh ,\text {sech},\tanh ,\text {csch},\coth ,\sec ,\tan ,\csc ,\cot \) solutions in previous literatures. From this exponential-form solution for the separation of the variables, the imperfect elastic collision between bell-shaped and peak-shaped double-loop semi-folded solitary waves, imperfect elastic collision between peak-shaped double-loop semi-folded and double-loop full-folded solitary waves and perfectly inelastic collision between bell-shaped and peak-shaped double-loop semi-folded solitary waves are graphically and analytically discussed. Moreover, the collision properties between solitary waves are quantificationally analysed by the asymptotic analysis. Phase shifts and their difference values of collisions between double-loop multivalue solitary waves are analytically presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S Kumar and D Kumar, Pramana – J. Phys. 95, 152 (2021)

    Google Scholar 

  2. S Roy, S Raut and R R Kairi, Pramana – J. Phys. 96, 67 (2022)

    Google Scholar 

  3. A.M. Wazwaz, Waves Random Complex Media 31, 46 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  4. Y Fang, G Z Wu, X K Wen, Y Y Wang and C Q Dai, Opt. Laser Technol. 155, 108428 (2022)

    Article  Google Scholar 

  5. C Q Dai and Y Y Wang, Nonlinear Dyn. 102, 1733 (2020)

    Article  Google Scholar 

  6. C Q Dai, Y Fan and Y Y Wang, Nonlinear Dyn. 98, 489 (2019)

    Article  Google Scholar 

  7. Y X Chen and F Y Ou-Yang, Nonlinear Dyn. 100, 1543 (2020)

    Article  Google Scholar 

  8. C Q Dai, Y Y Wang and A Biswas, Ocean Eng. 81, 77 (2014)

    Article  Google Scholar 

  9. Q H Cao and C Q Dai, Chin. Phys. Lett. 38, 090501 (2021)

    Article  ADS  Google Scholar 

  10. C Q Dai and J F Zhang. Nonlinear Dyn. 100, 1621 (2020)

    Article  Google Scholar 

  11. J J Fang, D S Mou and H C Zhang, Y Y Wang, Optik 228, 166186 (2021)

    Article  ADS  Google Scholar 

  12. D J Korteweg and G de Vries, Philos. Magn. Serl. 39, 422 (1895)

    Article  Google Scholar 

  13. J R Womersley, J. Physiol. 127, 553 (1955)

    Article  Google Scholar 

  14. X Y Tang, S Y Lou and Y Zhang, Phys. Rev. E 66, 046601 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  15. C Q Dai, Phys. Scr. 75, 310 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. H Y Wu and L H Jiang, Nonlinear Dyn. 97, 403 (2019)

    Article  Google Scholar 

  17. T Kappeler and J Poschel, KdV & KAM (Springer, Cham, 2003)

    Book  MATH  Google Scholar 

  18. C Q Dai and Y Y Wang, Appl. Math. Lett. 56, 10 (2016)

    Article  MathSciNet  Google Scholar 

  19. C Q Dai, Y Y Wang, Y Fan and J F Zhang, Appl. Math. Model. 80, 506 (2020)

    Article  MathSciNet  Google Scholar 

  20. Y Y Wang, Y P Zhang and C Q Dai, Nonlinear Dyn. 83, 1331 (2016)

    Article  Google Scholar 

  21. B Zhang, X L Zhang and C Q Dai, Nonlinear Dyn. 87, 2385 (2017)

    Article  Google Scholar 

  22. M S Khatun, M F Hoque and M A Rahman, Phys. Scr. 95, 085219 (2020)

    Article  ADS  Google Scholar 

  23. Y Y Wang and C Q Dai, Appl. Math. Model. 40, 3475 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. C Q Dai and Y Y Wang, Nonlinear Dyn. 70, 189 (2012)

    Article  Google Scholar 

  25. L Q Kong and C Q Dai, Nonlinear Dyn. 81, 1553 (2015)

    Article  Google Scholar 

  26. C Q Dai and Y Y Wang, Commun. Nonlinear Sci. Numer. Simulat. 19, 19 (2014)

    Article  ADS  Google Scholar 

  27. Y Emmanuel, Chin. J. Phys. 43, 991 (2005)

    Google Scholar 

  28. T X Zhang, H N Xuan, D F Zhang and C J Wang, Chaos Solitons Fractals 34, 1006 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. D J Huang and H Q Zhang, Chaos Solitons Fractals 23, 601 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. M Boiti, J J P Leon, M Manna and F Penpinelli, Inverse Problem 2, 25 (1986)

    Article  Google Scholar 

  31. B Dorizzi, B Grammaticos, A Ramani and P Winternitez, J. Math. Phys. 27, 2848 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  32. J Lin and F M Wu, Chaos Solitons Fractals 19, 189 (2004)

    Article  ADS  Google Scholar 

  33. C Q Dai and J F Zhang, Phys. Lett. A 367, 454 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. C Q Dai, G Q Zhou and J F Zhang, Chaos Solitons Fractals 33, 1458 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  35. C Q Dai and J F Zhang, Int. J. Nonlin. Sci. Numer. Simul. 10, 675 (2009)

    Article  Google Scholar 

  36. S H Ma, J B Li and J P Fang, Commun. Theor. Phys. 48, 1063 (2007)

  37. S H Ma, J Y Qiang and J P Fang, Commun. Theor. Phys. 48, 662 (2007)

    Article  ADS  Google Scholar 

  38. C Q Dai and J F Zhang, Rev. Math. Phys. 19, 195 (2007)

    Article  MathSciNet  Google Scholar 

  39. V O Vakhnenko, J. Phys. A 25, 4181 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  40. B Wu, R B Diener and Q Niu, Phys. Rev. A 65, 025601 (2002)

    Article  ADS  Google Scholar 

  41. S Matsutani, Mod. Phys. Lett. A 10, 717 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  42. M Schleif and R Wunsch, Eur. Phys. J. A 1, 171 (1998)

    Article  ADS  Google Scholar 

  43. J F Zhang, C Q Dai, C Z Xu and J P Meng, Phys. Lett. A 352, 511 (2006)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11975197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Xiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YX., Xiao, X. Double-loop multivalue solitary waves and their collisions for a 2D KdV equation. Pramana - J Phys 96, 202 (2022). https://doi.org/10.1007/s12043-022-02448-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02448-2

Keywords

PACS

Navigation