Skip to main content
Log in

Re-study on localized structures based on variable separation solutions from the modified tanh-function method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We derive variable separation solutions of the (\(1+1\))-dimensional KdV-type model by means of the modified tanh-function method with three different ansätz. Superficially speaking, the positive and negative power-symmetric ansatz seems to be better than the positive-power ansatz and radical sign combined ansatz because the positive and negative power-symmetric ansatz can construct the most forms of variable separation solutions. Actually, we find that various “different” solutions obtained by the modified tanh-function method are not independent, and many of the so-called new solutions are equivalent to one another. Moreover, in the two- or multi-component system, if we construct localized coherent structures for a special component based on variable separation solutions, we must note the structure constructed by the other component for the same equation in order to avoid the appearance of some divergent and un-physical structures. We hope that these results above contribute to the analysis on exact solutions and the construction of localized structures for other nonlinear models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Korteweg, D.J., de Vries, G.: On the change of form of long wave advancing in a rectangular canal and on a new-type of long stationary waves. Phiols. Mag 39, 422–443 (1895)

    Article  MATH  Google Scholar 

  2. Chen, J.H., Wei, N.X.: Effects of adiabatic dust charge fluctuation and particles collisions on dust-acoustic solitary waves in three-dimensional magnetized dusty plasmas. Commun. Theor. Phys. 51, 524–528 (2009)

    Article  MATH  Google Scholar 

  3. Huang, G.X., Szeftel, J., Zhu, S.H.: Dynamics of dark solitons in quasi-one-dimensional Bose-Einstein condensates. Phys. Rev. A 65, 053605 (2002)

    Article  Google Scholar 

  4. Demiray, H.: Nonlinear waves in a fluid-filled inhomogeneous elastic tube with variable radius. Int. J. Nonlinear Mech. 43, 241–245 (2008)

    Article  Google Scholar 

  5. Ablowtiz, M.J., Clarkson, P.A.: Soliton, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  6. Lou, S.Y.: Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation. Phys. Lett. A 175, 23–26 (1993)

    Article  MathSciNet  Google Scholar 

  7. Savescu, M., Bhrawy, Ali H., Hilal, E.M., Alshaery, A.A., Moraru, L., Biswas, A.: Optical solitons in birefringent fibers with four-wave mixing for parabolic law nonlinearity, Optoelectronics and Advanced Materials-Rapid. Communications 9, 10–13 (2015)

    Google Scholar 

  8. Mirzazadeh, M., Eslami, M., Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M.: Anjan Biswas: optical solitons in DWDM system with spatio-temporal dispersion. J. Nonlinear Opt. Phys. Mater. 24, 1550006 (2015)

    Article  Google Scholar 

  9. Savescu, M., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Zhou, Q., Biswas, A.: Optical solitons in DWDM system with four-wave mixing. Optoelectron. Adv. Mater. Rapid. Commun. 9, 14–19 (2015)

    Google Scholar 

  10. Vega-Guzman, J., Zhou, Q., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Biswas, A.: Optical solitons in cascaded system with spatio-temporal dispersion. Optoelectron. Adv. Mater. Rapid Commun. 17, 74–81 (2015)

    Google Scholar 

  11. Vega-Guzman, J., Zhou, Q., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Biswas, A.: Optical solitons in cascaded system with spatio-temporal dispersion by ansatz approach. Optoelectron. Adv. Mater. Rapid Commun. 17, 165–171 (2015)

    Google Scholar 

  12. Zhou, Q., Zhu, Q., Savescu, M., Bhrawy, A., Biswas, A.: Optical solitons with nonlinear dispersion in parabolic law medium. Proc Rom. Acad. A 16, 152–159 (2015)

    MathSciNet  Google Scholar 

  13. Zhou, Q., Zhu, Q.P., Yu, H., Liu, Y.X., Wei, C., Yao, P., Bhrawy, A.H., Biswas, A.: Bright, dark and singular optical solitons in a cascaded system. Laser Phys. 25, 025402 (2015)

    Article  Google Scholar 

  14. Chen, Y.X.: Sech-type and Gaussian-type light bullet solutions to the generalized (3 + 1)-dimensional cubic-quintic Schrodinger equation in PT-symmetric potentials. Nonlinear Dyn. 79, 427–436 (2015)

    Article  Google Scholar 

  15. Zhu, H.P.: Spatiotemporal solitons on cnoidal wave backgrounds in three media with different distributed transverse diffraction and dispersion. Nonlinear Dyn. 76, 1651–1659 (2014)

    Article  Google Scholar 

  16. Chen, H.Y., Zhu, H.P.: Controllable behaviors of spatiotemporal breathers in a generalized variable-coefficient nonlinear Schrödinger model from arterial mechanics and optical fibers. Nonlinear Dyn. 81, 141–149 (2015)

    Article  Google Scholar 

  17. Zhong, W.P., Belic, M.R., Petrovic, M.S.: Solitary and extended waves in the generalized sinh-Gordon equation with a variable coefficient. Nonlinear Dyn. 76, 717–723 (2014)

    Article  MathSciNet  Google Scholar 

  18. Zheng, C.L., Chen, L.Q., Zhang, J.F.: Peakon, compacton and loop excitations with periodic behavior in KdV type models related to Schrödinger system. Phys. Lett. A 340, 397–402 (2005)

    Article  MATH  Google Scholar 

  19. Zheng, C.L., Zhu, H.P.: Localized excitations with periodic and chaotic behaviors in (1 + 1)-dimensional Korteweg-de Vries type system. Chaos Solitons Fractals 34, 492–498 (2007)

    MathSciNet  Google Scholar 

  20. Zhu, H.P., Zheng, C.L., Fang, J.P.: Exact solution to (1 + 1)-dimensional higher-order schrodinger equation via an extended mapping approach. Commun. Theor. Phys. 45, 127–130 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, W.L., Ma, S.H., Chen, J.J.: Complex wave solutions and localized excitations of (2+1)-dimensional Korteweg-de Vries system. Acta Phys. Sin. 63, 080506 (2014)

    Google Scholar 

  22. Dai, C.Q., Wang, Y.Y.: The novel solitary wave structures and interactions in the (2+1)-dimensional Korteweg-de Vries system. Appl. Math. Comput. 208, 453–461 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kudryashov, N.A.: Seven common errors in finding exact solutions of nonlinear differential equations. Commun. Non Sci. Numer. Simul. 14, 3507–3529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kudryashov, N.A., Ryabov, P.N., Sinelshchikov, D.I.: Comment on: “Application of the (G’/G) method for the complex KdV equation” [Huiqun Zhang, Commun Nonlinear Sci Numer Simulat 15, 2010, 1700–1704]. Commun. Non Sci. Numer. Simul. 16, 596–598 (2011)

    Article  MATH  Google Scholar 

  25. Parkes, E.J.: Observations on the basic (G’/G): expansion method for finding solutions to nonlinear evolution equations. Appl. Math. Comput. 217, 1759–1763 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dai, C.Q., Zhang, J.F.: Novel variable separation solutions and exotic localized excitations via the ETM in nonlinear soliton systems. J. Math. Phys. 47, 043501 (2006)

    Article  MathSciNet  Google Scholar 

  27. Dai, C.Q., Zhang, J.F.: New types of interactions based on variable separation solutions via the general projective Riccati equation method. Rev. Math. Phys. 19, 195–226 (2007)

  28. Dai, C.Q., Wang, Y.Y.: Notes on the equivalence of different variable separation approaches for nonlinear evolution equations. Commun. Nonlinear Sci. Numer. Simul. 19, 19–28 (2014)

    Article  MathSciNet  Google Scholar 

  29. Nimmo, J.J.C.: A class of solutions of the Konopelchenko-Rogers equation. Phys. Lett. A 168, 113–119 (1992)

    Article  MathSciNet  Google Scholar 

  30. Verosky, J.M.: Negative powers of Olver recursion operators. J. Math. Phys. 32, 1733–1736 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Calogero, F., Degasperis, A., Xiaoda, J.: Nonlinear Schrödinger-type equations from multiscale reduction of PDEs. I. Systematic derivation. J. Math. Phys. 41, 6399–6443 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Arai, A.: Exactly solvable supersymmetric quantum mechanics. J. Math. Anal. Appl. 158, 63–79 (1991)

  33. Ruan, H.Y.: Some discussions about the variable separating method for solving nonlinear models. Chin. Phys. B 19, 050204 (2010)

  34. Rosenaup, P., Hyman, J.M.: Compactons: solitons with finites wavelength. Phys. Rev. Lett. 70, 564–567 (1993)

    Article  Google Scholar 

  35. Agüero, M.A., Belyaeva, T.L., Serkin, V.N.: Compacton anti-compacton pair for hydrogen bonds and rotational waves in DNA dynamics commun. Nonlinear Sci. Numer. Simul. 16, 3071–3080 (2011)

    Article  MATH  Google Scholar 

  36. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

  37. Rehman, T., Gambino, G., Roy Choudhury, S.: Smooth and non-smooth traveling wave solutions of some generalized Camassa-Holm equations. Commun. Nonlinear Sci. Numer. Simul. 19, 1746–1769 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY13F050006), the National Natural Science Foundation of China (Grant Nos. 11404289 and 11375007), and the Scientific Research and Developed Fund of Zhejiang A & F University (Grant No. 2014FR020). Dr. Chao-Qing Dai is also sponsored by the Foundation of New Century “151 Talent Engineering” of Zhejiang Province of China and Youth Top-notch Talent Development and Training Program of Zhejiang A&F University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Yue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YY., Zhang, YP. & Dai, CQ. Re-study on localized structures based on variable separation solutions from the modified tanh-function method. Nonlinear Dyn 83, 1331–1339 (2016). https://doi.org/10.1007/s11071-015-2406-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2406-5

Keywords

Navigation