Skip to main content
Log in

Cu–water nanofluid flow with arbitrarily shaped nanoparticles over a porous plate in a porous medium in the presence of slip

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The objective of the article is to analyse the forced convection nanofluid flow over a permeable plate in an absorbent medium using slip boundary conditions. A single-phase model for the nanofluid is used with variable shapes of nanoparticles. The partial differential equations (PDEs) of the model are altered into a set of non-linear ordinary differential equations (ODEs) by a suitable alteration. To obtain the solutions of the system of equations numerically, Runge–Kutta method is used with a shooting technique. The effects of various parameters, like permeability, suction\(/\)injection, nanoparticle volume fraction, velocity slip, thermal slip and nanoparticle shape parameters on velocity and temperature profiles are presented graphically and analysed. In addition, for a clear understanding of the model, the flow and the heat transfer characteristics are presented through graphs and analysed. Fluid velocity is found to increase with the increasing values of permeability of the porous medium, whereas temperature is found to reduce in this case. Temperature is a rising function of the thermal slip parameter, whereas it is a decreasing function of the velocity slip parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. S U S Choi, in: The Proceedings of the ASME International Mechanical Engineering Congress and Exposition (San Francisco, USA, ASME, FED, 231/MD) 66, 99–105 (1995)

  2. J Buongiorno, J. Heat Transf. 128 ,240 (2006)

    Article  Google Scholar 

  3. R K Tiwari and M K Das, Int. J. Heat Mass Transf. 50, 2002 (2007)

    Article  Google Scholar 

  4. M Mustafa, T Hayat, I Pop, S Asghar and S Obaidat, Int. J. Heat Mass Transf. 54, 5588 (2011)

    Article  Google Scholar 

  5. S Nadeem and C Lee, Nanoscale Resc. Lett. 7(94), 1 (2012)

    Google Scholar 

  6. S Nadeem, R Ul Haq and Z H Khan, Alex. Engng. J. 53, 219 (2014)

    Article  Google Scholar 

  7. ST Hussain, S Nadeem and R Ul Haq, Eur. Phys. J. Plus 129, 161 (2014)

    Article  Google Scholar 

  8. K Das, P R Duari and P K Kundu, Alex. Eng. J. 53, 737 (2014)

    Article  Google Scholar 

  9. F Mabood, W A Khan and A I M Ismail, J. Magn. Magn. Mater. 374, 569 (2015)

    Article  ADS  Google Scholar 

  10. T Hayat, A Aziz, T Muhammad and A Alsaedi, Chin. J. Phys. 55, 1495 (2017)

    Article  Google Scholar 

  11. E H Hafidzuddin, R Nazar, N M Arifin and I Pop, Eur. J. Mech. B Fluids 65, 515 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. C Choi and C Kim, Phys. Rev. Lett. 96, 066001(2006)

    Article  ADS  Google Scholar 

  13. T Hayat, T Javed and Z Abbas, Int. J. Heat Mass Transf. 51, 4528 (2008)

    Article  Google Scholar 

  14. S Mukhopadhyay, K Bhattacharyya and G C Layek, Int. J. Heat Mass Transf. 54(13–14), 2751 (2011)

    Article  Google Scholar 

  15. M Sajid, Z Abbas, N Ali, T Javed and I Ahmad, Walailak J. Sci. Technol. 11, 1093 (2014)

    Google Scholar 

  16. A K Verma, A K Gautam, K Bhattacharyya, A Banerjee and A J Chamkha, Pramana – J. Phys. 95, 173 (2021)

    Article  ADS  Google Scholar 

  17. A K Gautam, A K Verma, K Bhattacharyya, S Mukhopadhyay and A J Chamkha, Waves Random Complex Media, https://doi.org/10.1080/17455030.2021.1979274 (2021)

    Article  Google Scholar 

  18. A Banerjee, K Bhattacharyya, S K Mahato and A J Chamkha, Chin. Phys. B. 31(4), 044701 (2022)

    Article  ADS  Google Scholar 

  19. S Mukhopadhyay and G C Layek, Meccanica 44, 587 (2009)

    Article  MathSciNet  Google Scholar 

  20. S Mukhopadhyay, P R De, K Bhattacharyya and G C Layek, Meccanica 47, 153 (2012)

    Article  MathSciNet  Google Scholar 

  21. A Aziz, W A Khan and I Pop, Int. J. Therm. Sci. 56, 48 (2012)

    Article  Google Scholar 

  22. J V Ramana Reddy, V Sugunamma, N Sandeep and C Sulochana, J. Nigerian Math. Soc. 35, 48 (2016)

    Article  MathSciNet  Google Scholar 

  23. T Chakraborty, K Das and P K Kundu, J. Mech. Sci. Technol. 31(5), 2443 (2017)

    Article  Google Scholar 

  24. R L Hamilton and O K Crosser, J. Ind. Eng. Chem. Fund. 1, 187 (1962)

    Article  Google Scholar 

  25. K Das, J. Mech. Sci. Technol. 28(12), 5089 (2014)

    Article  Google Scholar 

  26. H Blasius, Z. Math. Phys. 56, 1 (1908)

    Google Scholar 

  27. L Howarth, Proc. R. Soc. Lond. A 164, 547 (1938)

    Article  ADS  Google Scholar 

  28. R Cortell, Appl. Math. Comput. 170, 706 (2005)

    MathSciNet  Google Scholar 

  29. A Ishak, R Nazar and I Pop, Int. J. Heat Mass Transf. 50, 4743 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the help and support received from the learned reviewers and editors for their constructive suggestions, which improved the quality of the paper. Also, the authors thank Prof. M Taylor for reading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, S., Mandal, M.S. & Vajravelu, K. Cu–water nanofluid flow with arbitrarily shaped nanoparticles over a porous plate in a porous medium in the presence of slip. Pramana - J Phys 96, 196 (2022). https://doi.org/10.1007/s12043-022-02437-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02437-5

Keywords

PACS Nos

Navigation