Skip to main content
Log in

Natural Convection Boundary Layer Flow over a Horizontal Plate Embedded in a Porous Medium Saturated with a Nanofluid: Case of Variable Thermophysical Properties

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

There is a rising interest in application of nanofluids in porous media. As such, this paper is aimed at numerically investigating convective boundary layer flow over a plate embedded in a porous medium filled with nanofluid. Influence of multifarious boundary layers’ applications namely concentration boundary layer of nanoparticles and thermal ones on thermal conductivity and dynamic viscosity of the nanofluid is studied. A new enhanced boundary condition, zero mass flux of nanoparticles through the surface, is adopted to calculate the volume fraction of nanoparticles on the surface. Furthermore, the effect of different practical non-dimensional parameters such as Brownian motion, thermophoresis, Lewis number, and buoyancy ratio on the hydrodynamic, thermal, and concentration boundary layers is investigated. It is revealed that an increase in buoyancy ratio culminates in temperature rise and velocity reduction. The results also show that as the dimensionless Lewis number increases, the fraction of nanoparticles at the sheet soars; on the other hand, the variation of Lewis number does not have considerable effect on the thermal and hydrodynamic boundary layers. Moreover, introducing an enhancement ratio as a criterion to examine the variation of thermal convective coefficient reveals that this value is a decreasing function of buoyancy ratio parameter. In some cases, the value of enhancement ratio becomes less than unity as the buoyancy ratio gets stronger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(D_\mathrm{B}\) :

Brownian diffusion coefficient (\(\mathrm{m}^{2}/\mathrm{s}\))

\(D_\mathrm{T}\) :

Thermophoretic diffusion coefficient (\(\mathrm{m}^{2}/\mathrm{s}\))

F :

Rescaled nanoparticles volume fraction, nanoparticles concentration

g :

Gravitational acceleration vector

h :

Convective heat transfer coefficient (\(\mathrm{J}/\mathrm{m}^{2})\)

\(k_\mathrm{eff}\) :

Effective thermal conductivity of the porous medium (W/m K)

K :

Permeability of porous medium

Le :

Lewis number

\(N_\mathrm{b}\) :

Brownian motion parameter

\(\mathrm{NC}_\mathrm{f}\) :

Thermal conductivity concentration coefficient

\(\mathrm{NC}_\mathrm{T}\) :

Thermal conductivity temperature coefficient

\(N_\mathrm{r}\) :

Buoyancy ratio

\(\mathrm{NV}_\mathrm{f}\) :

Viscosity concentration coefficient

\(\mathrm{NV}_\mathrm{T}\) :

Thermal viscosity coefficient

\(N_\mathrm{t}\) :

Thermophoresis parameter

p :

Pressure (Pa)

\(Ra_{x}\) :

Local Rayleigh number

S :

Dimensionless stream function

T :

temperature (K)

\(\bar{{u}},\,\bar{{v}}\) :

Darcy velocity components along x and y directions (m/s)

\((x,\,y)\) :

Cartesian coordinates

\(\alpha \) :

Thermal diffusivity (\(\mathrm{m}^{2}/\mathrm{s}\))

\(\beta \) :

Volumetric expansion coefficient of fluid

\(\varepsilon \) :

Porosity

\(\eta \) :

Dimensionless distance

\(\theta \) :

Dimensionless temperature

\(\mu _\mathrm{eff}\) :

Viscosity of fluid (Pa s)

\(\nu _\mathrm{eff}\) :

Cinematic viscosity

\(\rho \) :

Density (\(\mathrm{kg}/\mathrm{m}^{3})\)

\(\rho _\mathrm{c}\) :

Heat capacity (\(\mathrm{J}/\mathrm{m}^{3}\,\mathrm{K}\))

\(\tau \) :

Parameter defined by Eq. (5)

\(\varphi \) :

Dimensionless nanoparticles volume fraction

\(\psi \) :

Stream function

\(\infty \) :

Free stream

m:

Porous medium

bf:

The base fluid

drift-flux:

The drift flux model

nf:

Nanofluid

p:

Nanoparticles

w:

Sheet, wall, surface

References

  • Anjali Devi, S.P., Andrews, J.: Laminar boundary layer flow of nanofluid over a flat plate. Int. J. Appl. Math. Mech. 7, 52–71 (2011)

    Google Scholar 

  • Aziz, A., Khan, W.A., Pop, I.: Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms. Int. J. Therm. Sci. 56, 48–57 (2012)

    Article  Google Scholar 

  • Bachok, N., Ishak, A., Pop, I.: Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int. J. Therm. Sci. 49, 1663–1668 (2010)

    Article  Google Scholar 

  • Behseresht, A., Noghrehabadi, A., Ghalambaz, M.: Natural-convection heat and mass transfer from a vertical cone in porous media filled with nanofluids using the practical ranges of nanofluids thermo-physical properties. Chem. Eng. Res. Des. 92, 447–452 (2014)

  • Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–245 (2006)

    Article  Google Scholar 

  • Chon, C.H., Kihm, K.D., Lee, S.P., Choi, S.U.S.: Empirical correlation finding the role of temperature and particle size for nanofluid (\({\rm Al}_{2}{\rm O}_{3})\) thermal conductivity enhancement. Appl. Phys. Lett. 87, 153107 (2005)

    Article  Google Scholar 

  • Gorla, R.S.R., Chamkha, A.: Natural convective boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid. J. Mod. Phys. 2, 62–71 (2011)

    Article  Google Scholar 

  • Ingham, D.B., Pop, I.: Transport Phenomena in Porous Media III. Elsevier, Oxford (2005)

    Google Scholar 

  • Khan, W.A., Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483 (2010)

    Article  Google Scholar 

  • Khanafer, K., Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54, 4410–4428 (2011)

    Article  Google Scholar 

  • Koo, J., Kleinstreuer, C.: A new thermal conductivity model for nanofluids. J. Nanopart. Res. 6, 577–588 (2004)

    Article  Google Scholar 

  • Kuznetsov, A.V., Nield, D.A.: The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised model. Int. J. Heat Mass Transf. 65, 682–685 (2013)

    Article  Google Scholar 

  • Masuda, H., Ebata, A., Teramae, K., Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of c-\({\rm Al}_{2}{\rm O}_{3},\,{\rm SiO}_{2}\) and \({\rm TiO}_{2}\) ultra-fine particles). Netsu Bussei 4, 227–233 (1993)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, 4th edn. Springer, New York (2013)

    Book  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010a)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: The onset of convection in a horizontal nanofluid layer of finite depth. Eur. J. Mech. B 29, 217–223 (2010b)

    Article  Google Scholar 

  • Noghrehabadi, N., Pourrajab, R., Ghalambaz, M.: Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. Int. J. Therm. Sci. 54, 253–261 (2012)

    Article  Google Scholar 

  • Noghrehabadi, A., Pourrajab, R., Ghalambaz, M.: Flow and heat transfer of nanofluids over stretching sheet taking into account partial slip and thermal convective boundary conditions. Heat Mass Transf. 49, 1357–1366 (2013)

    Article  Google Scholar 

  • Pastoriza-Gallego, M.J., Lugo, L., Cabaleiro, D., Legido, J.L., Piñeiro, M.M.: Thermophysical profile of ethylene glycol-based ZnO nanofluids. J. Chem. Thermodyn. 73, 23–30 (2014)

    Article  Google Scholar 

  • Sakai, F., Li, W., Nakayama, A.: A rigorous derivation and its applications of volume averaged transport equations for heat transfer in nanofluid saturated metal foams. In: Proceedings of the 15th International Heat Transfer Conference, IHTC-15, Kyoto, Japan, 10–15 August 2014

  • Shampine, L.F., Kierzenka, J., Reichelt, M.W.: Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutorial notes (2000)

  • Vafai, K.: Handbook of Porous Media, 2nd edn. Taylor and Francis, New York (2005)

    Google Scholar 

  • Vafai, K.: Porous Media: Applications in Biological Systems and Biotechnology. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  • Wang, X., Xu, X., Choi, S.U.S.: Thermal conductivity of nanoparticles–fluid mixture. J. Thermophys. Heat Transf. 13, 474–480 (1999)

    Article  Google Scholar 

  • Wu, M., Kuznetsov, A.V., Jasper, W.J.: Modeling of particle trajectories in an electrostatically charged channel. Phys. Fluids 22, 043301 (2010)

    Article  Google Scholar 

  • Wu, G., Kuznetsov, A.V., Jasper, W.J.: Distribution characteristics of exhaust gases and soot particles in a wall-flow ceramics filter. J. Aerosol Sci. 42, 447–461 (2011)

    Article  Google Scholar 

  • Yacob, N.A., Ishak, A., Nazar, R., Pop, I.: Falkner–Skan problem for a static and moving wedge with prescribed surface heat flux in a nanofluid. Int. Commun. Heat Mass 38, 149–153 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the very competent Reviewers for the valuable comments and suggestions. The first author is grateful to Shahid Chamran University of Ahvaz for its support. Noghrehabadi, Zargartalebi and Ghalambaz acknowledge the Iran Nanotechnology Initiative Council (INIC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Noghrehabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zargartalebi, H., Noghrehabadi, A., Ghalambaz, M. et al. Natural Convection Boundary Layer Flow over a Horizontal Plate Embedded in a Porous Medium Saturated with a Nanofluid: Case of Variable Thermophysical Properties. Transp Porous Med 107, 153–170 (2015). https://doi.org/10.1007/s11242-014-0430-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0430-4

Keywords

Navigation