Skip to main content

Advertisement

Log in

Boundary layer flow of non-Newtonian Eyring–Powell nanofluid over a moving flat plate in Darcy porous medium with a parallel free-stream: Multiple solutions and stability analysis

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Two-dimensional forced convective steady boundary layer flow of non-Newtonian Eyring–Powell nanofluid over a moving plate in a porous medium in the presence of a parallel free-stream is investigated. The governing coupled non-linear partial differential equations (PDEs) along with boundary conditions are transformed into a set of non-linear coupled ordinary differential equations (ODEs) by using appropriate transformations. The obtained non-linear ODEs with modified boundary conditions are converted into a system of first-order ODEs which are solved using the classical and efficient shooting method. Dual solutions for velocity, temperature and nanoparticle concentration distributions for Eying–Powell fluids similar to Newtonian fluid in some special flow situations are obtained, when the plate and free-stream are moving along mutually opposite directions. The stability analysis of the obtained solutions is performed and it is found that the upper branch solutions are physically stable, while lower branch solutions are unstable. The impacts of different dimensionless physical parameters on velocity, temperature and nanoparticle concentration are reported in the form of graphs and tables. An important result is obtained and it reveals that the ‘dual solutions’ character has been destroyed if resistance due to the porous medium is raised up to a definite level (i.e., permeability parameter \(K > 0.07979\)), though the range of existence of unique solution becomes larger with further increase of resistance due to porous medium. It is also observed that heat transfer rate diminishes with increasing thermophoresis parameter, Brownian diffusion parameter and Lewis number in all the cases, whereas mass transfer rate enhances with thermophoresis parameter (for dual solutions), Brownian diffusion parameter (for unique solutions) and Lewis number (for unique solutions). Further, skin-friction coefficient, i.e., the surface drag force, increases with permeability parameter, suction/injection parameter and decreases with Eyring–Powell fluid parameter. Also, increments in permeability parameter and the suction/injection parameter lead to the delay in the boundary layer separation. The critical values of velocity ratio parameter beyond which the boundary layer separation appears are − 0.5476432, − 0.5987132, − 0.704862, − 0.816944, − 0.9365732, − 0.96179102, − 1.057104, − 1.062004, − 1.09222, − 1.115824, − 1.193413, − 1.591023 and − 1.898366 for \(K = 0\), 0.01, 0.03, 0.05, 0.07, 0.074, 0.08, 0.082, 0.085, 0.09, 0.1, 0.15 and 0.2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S U S Choi, ASME 66, 99 (1995)

    Google Scholar 

  2. S U S Choi, Z G Zhang, W Yu, Lockwood and E A Grulke, Appl. Phys. Lett. 79, 2252 (2001)

    Article  ADS  Google Scholar 

  3. K V Wong and O D Leon, Adv. Mech. Eng. 2010, 519659 (2010)

  4. Y M Xuan and Q Li, Int. J. Heat Fluid Flow 21, 58 (2000)

    Article  Google Scholar 

  5. S K Das, S U S Choi, W Yu and T Pradet, Nanofluids: Science and technology (Wiley, New Jersey, 2007)

    Book  Google Scholar 

  6. W Daungthongsuk and S Wongwises, Renew. Sust. Energ. Rev. 11, 797 (2007)

    Article  Google Scholar 

  7. V Trisaksri and S Wongwises, Renew. Sust. Energ. Rev. 11, 512 (2007)

    Article  Google Scholar 

  8. X-Q Wang and A S Mujumdar, Int. J. Therm. Sci. 46, 1 (2007)

    Article  Google Scholar 

  9. X-Q Wang and A S Mujumdar, Braz. J. Chem. Eng. 25, 613 (2008)

    Article  Google Scholar 

  10. X-Q Wang and A S Mujumdar, Braz. J. Chem. Eng. 25, 631 (2008)

    Article  Google Scholar 

  11. S Kakac and A Pramuanjaroenkij, Int. J. Heat Mass Transf. 52, 3187 (2009)

    Article  Google Scholar 

  12. J Buongiorno, ASME J. Heat Transf. 128, 240 (2006)

    Article  Google Scholar 

  13. D A Nield and A V Kuznetsov, Int. J. Heat Mass Transf. 52, 5792 (2009)

    Article  Google Scholar 

  14. D A Nield and A V Kuznetsov, Int. J. Heat Mass Transf. 54, 374 (2011)

    Article  Google Scholar 

  15. A V Kuznetsov and D A Nield, Int. J. Therm. Sci. 49, 243 (2010)

    Article  Google Scholar 

  16. A V Kuznetsov and D A Nield, Int. J. Therm. Sci. 50, 712 (2011)

    Article  Google Scholar 

  17. W A Khan and I Pop, Int. J. Heat Mass Transf. 53, 2477 (2010)

    Article  Google Scholar 

  18. N Bachok, A Ishak and I Pop, Int. J. Therm. Sci. 49, 1663 (2010)

    Article  Google Scholar 

  19. M I Khan, S Qayyum, S Farooq, T Hayat and A Alsaedi, Pramana – J. Phys. 93: 62 (2019)

    Google Scholar 

  20. S Ghosh and S Mukhopadhyay, Pramana – J. Phys. 94: 61 (2020)

    Google Scholar 

  21. R E Powell and H Eyring, Nature 154, 427 (1944)

    Article  ADS  Google Scholar 

  22. M Jalil, S Asghar and S M Imran, Int. J. Heat Mass Transf. 65, 73 (2013)

    Article  Google Scholar 

  23. A Mushtaq, M Mustafa, T Hayat, M Rahi and A Alsaedi, Z. Naturforsch. A 68a, 791 (2013)

  24. M Poonia and R Bhargava, J. Thermophys. Heat Transf. 28, 499 (2014)

    Article  Google Scholar 

  25. T Hayat, I Ullah, T Muhammad, A Alsaedi and S A Shehzad, Chin. Phys. B 25, 074701 (2016)

  26. T Hayat, R Sajjad, T Muhammad, A Alsaedi and R Ellahi, Results Phys. 7, 535 (2017)

    Article  ADS  Google Scholar 

  27. W Ibrahim and B Hindebu, Nonlinear Eng. 8, 303 (2019)

    Article  ADS  Google Scholar 

  28. M Y Malik, I Khan, A Hussain and T Salahuddin, AIP Adv. 5, 117118 (2015)

  29. G Sowmya, B J Gireesha, S Sindhu and B C Prasannakumara, Commun. Theor. Phys. 72(2), 025004 (2020)

  30. B J Gireesha, M Umeshaiah, B C Prasannakumara, N S Shashikumar and M Archana, Physica A 549, 124051 (2020)

  31. R J Punith Gowda, R N Kumar, A Aldalbahi, A Issakhov, B C Prasannakumara, M Rahimi-Gorji and M Rahaman, Surf. Interfaces 22, 100364 (2021)

  32. M G Reddy, P Vijayakumari, L Krishna, K G Kumar and B C Prasannakumara, Multidiscip. Model. Mater. Struct. 16(6), 1669 (2020)

    Article  Google Scholar 

  33. A Roja, B J Gireesha and B C Prasannakumara, Multidiscip. Model. Mater. Struct. 16(6), 1475 (2020)

    Article  Google Scholar 

  34. H Blasius, Zeits. f. Math. u Phys. 56, 1 (1908)

    Google Scholar 

  35. E Pohlhausen, ZAMM 1, 121 (1921)

    Article  ADS  Google Scholar 

  36. L Howarth, Proc. R. Soc. Lond. A 164, 547 (1938)

    Article  ADS  Google Scholar 

  37. A M M Abu-Sitta, Appl. Math. Comput. 64, 73 (1994)

    MathSciNet  Google Scholar 

  38. L Wang, Appl. Math. Comput. 157, 1 (2004)

    MathSciNet  Google Scholar 

  39. R Cortell, Chin. Phys. Lett. 25, 1340 (2008)

    Article  Google Scholar 

  40. B C Sakiadis, AIChE J. 7, 26 (1961)

    Article  Google Scholar 

  41. T A Abdelhafez, Int. J. Heat Mass Transf. 28, 1234 (1985)

    Article  Google Scholar 

  42. N Afzal, A Badaruddin and A A Elgarvi, Int. J. Heat Mass Transf. 36, 3399 (1993)

    Article  Google Scholar 

  43. R C Bataller, Appl. Math. Comput. 198, 333 (2008)

    MathSciNet  Google Scholar 

  44. M Y Hussaini, W D Lakin and A Nachman, SIAM J. Appl. Math. 47, 699 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  45. H T Lin, K Y Wu and H L Hoh, Int. J. Heat Mass Transf. 36, 3547 (1993)

    Article  Google Scholar 

  46. A Ishak, R Nazar and I Pop, Chin. Phys. Lett. 24, 2274 (2007)

    Article  Google Scholar 

  47. A Ishak, R Nazar and I Pop, Int. J. Heat Mass Transf. 50, 4743 (2007)

    Article  Google Scholar 

  48. A Ishak, R Nazar and I Pop, Can. J. Phys. 85, 869 (2007)

    Article  ADS  Google Scholar 

  49. A Ishak, R Nazar and I Pop, Heat Mass Transf. 45, 563 (2009)

    Article  ADS  Google Scholar 

  50. A Ishak, R Nazar and I Pop, Chem. Eng. J. 148, 63 (2009)

    Article  Google Scholar 

  51. P D Weidman, D G Kubitschek and A M J Davis, Int. J. Eng. Sci. 44, 730 (2006)

    Article  Google Scholar 

  52. A Ishak, Chin. Phys. Lett. 26, 034701 (2009)

  53. S Mukhopadhyay, K Bhattacharyya and G C Layek, Int. J. Heat Mass Transf. 54, 2751 (2011)

    Article  Google Scholar 

  54. C Y Wang, Int. J. Nonlinear Mech. 43, 377 (2008)

    Article  ADS  Google Scholar 

  55. A Ishak, R Nazar and I Pop, Int. J. Heat Mass Transf. 51, 1150 (2008)

    Article  Google Scholar 

  56. A Ishak, Y Y Lok and I Pop, Chem. Eng. Commun. 197, 1417 (2010)

    Article  Google Scholar 

  57. K Bhattacharyya, Int. J. Heat Mass Transf. 55, 3482 (2012)

    Article  Google Scholar 

  58. H Rosali, A Ishak and I Pop, Int. Commun. Heat Mass Transf. 38, 1029 (2011).

    Article  Google Scholar 

  59. K Bhattacharyya and K Vajravelu, Commun. Nonlinear Sci. Numer. Simulat. 17, 2728 (2012)

    Article  ADS  Google Scholar 

  60. N Bachok, A Ishak and I Pop, Int. J. Heat Mass Transf. 55, 2102 (2012)

    Article  Google Scholar 

  61. K Vajravelu, G Sarojamma, K Sreelakshmi and C Kalyani, Int. J. Mech. Sci. 130, 119 (2017)

    Article  Google Scholar 

  62. K Naganthran, R Nazar and I Pop, Int. J. Mech. Sci. 131–132, 663 (2017)

    Article  Google Scholar 

  63. G S Seth, A K Singha, M S Mandal, A Banerjee and K Bhattacharyya, Int. J. Mech. Sci. 134, 98 (2017)

    Article  Google Scholar 

  64. S A Bakar, N MArifin, R Nazar, F M Ali, N Bachok and I Pop, J. Porous Media 21(7), 623 (2018)

  65. I Mustafa, T Javed, A Ghaffari and H Khalil, Pramana – J. Phys. 93: 53 (2019)

    Google Scholar 

  66. T Hayat, Z Iqbal, M Qasim and S Obaidat, Int. J. Heat Mass Transf. 55, 1817 (2012)

    Article  Google Scholar 

  67. P Kundu, V Kumar and I M Mishra, Powder Technol. 303, 278 (2016)

    Article  Google Scholar 

  68. J H Merkin, J. Eng. Math. 20, 171 (1985)

    Article  Google Scholar 

  69. N A L Aladdin, N Bachok and I Pop, Alex. Eng. J. 59, 657 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The research of A K Verma is supported by the Council of Scientific and Industrial Research, New Delhi, Ministry of Human Resources Development of India Grant (09/013(0724)/2017-EMR-I) and the work of A K Gautam is funded by the University Grants Commission, New Delhi, Ministry of Human Resources Development, Government of India Grant (1220/(CSIR-UGC NET DEC. 2016)). The authors are also thankful to the anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnendu Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A.K., Gautam, A.K., Bhattacharyya, K. et al. Boundary layer flow of non-Newtonian Eyring–Powell nanofluid over a moving flat plate in Darcy porous medium with a parallel free-stream: Multiple solutions and stability analysis. Pramana - J Phys 95, 173 (2021). https://doi.org/10.1007/s12043-021-02215-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02215-9

Keywords

PACS Nos

Navigation