Skip to main content
Log in

Influence of pairing symmetry and multiple energy gaps on the behaviour of critical current through the Josephson junction

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The extended Ambegaokar–Baratoff model was applied to calculate the critical current (\(I_c\)) of a superconductor/insulator/superconductor (S/I/S) Josephson junction with multiple tunnelling channels. We analysed the sensitivity of the critical current, multiplied by normal-state resistance (i.e., \(I_cR_n\) product), to the symmetries of the order parameter in the Bardeen–Cooper–Schrieffer (BCS)-type gap formula. In addition, we showed that the temperature dependence of the product \(I_cR_n(T)\), which corresponds to multigap symmetry, exhibits a shoulder-like feature and has a pronounced kink at \(T\simeq 10\) K for the \(\hbox {SmFeAsO}_{0.9}\)F\(_{0.1}\) superconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H Hosono, K Tanabe, E Takayama-Muromachi, H Kageyama, S Yamanaka, H Kumakura, M Nohara, H Hiramatsu and S Fujitsu, Sci. Technol. Adv. Mater. 16, 033503 (2015)

    Article  Google Scholar 

  2. H Hosono and K Kuroki, Physica C 514, 399 (2015)

    Article  ADS  Google Scholar 

  3. Q Si, R Yu and E Abrahams, Nat. Rev. Mater. 1, 16017 (2016)

    Article  ADS  Google Scholar 

  4. H Hosono, A Yamamoto, H Hiramatsu and Y Ma, Mater. Today 21, 278 (2018)

    Article  Google Scholar 

  5. C Yao and Y Ma, Supercond. Sci. Technol. 32, 023002 (2019)

    Article  ADS  Google Scholar 

  6. S J Singh and P Mele, Future potential of new high\(T_c\)iron-based superconductors (Springer, Cham, 2020)

  7. P J Hirschfeld, M M Korshunov and I I Mazin, Rep. Prog. Phys. 74, 124508 (2011)

    Article  ADS  Google Scholar 

  8. H-H Wen and S Li, Annu. Rev. Condens. Matter Phys. 2, 121 (2011)

    Article  ADS  Google Scholar 

  9. A Chubukov, Annu. Rev. Condens. Matter Phys. 3, 57 (2012)

    Article  Google Scholar 

  10. P J Hirschfeld, Compt. Rend. Phys. 17, 197 (2016)

    Article  ADS  Google Scholar 

  11. H-J Grafe et al, Phys. Rev. Lett. 101, 047003 (2008)

    Article  ADS  Google Scholar 

  12. S Onari, H Kontani and Y Tanaka, J. Phys. Soc. Jpn. 77, 023703 (2008)

    Article  ADS  Google Scholar 

  13. Y Shimizu, T Yamada, T Takami, S Niitaka, H Takagi and M Itoh, J. Phys. Soc. Jpn. 78, 123709 (2009)

    Article  ADS  Google Scholar 

  14. C T Chen, C C Tsuei, M B Ketchen, Z A Ren and Z X Zhao, Nat. Phys. 6, 260 (2010)

    Article  Google Scholar 

  15. P Richard, T Sato, K Nakayama, T Takahashi and H Ding, Rep. Prog. Phys. 74, 124512 (2011)

    Article  ADS  Google Scholar 

  16. R T Gordon et al, Phys. Rev. Lett. 102, 127004 (2009)

    Article  ADS  Google Scholar 

  17. J Li et al, Phys. Rev. B 85, 214509 (2012)

    Article  ADS  Google Scholar 

  18. H Yang, Z Wang, D Fang, Q Deng, Q H Wang, Y Y Xiang, Y Yang and H-H Wen, Nat. Commun. 4, 2749 (2013)

    Article  ADS  Google Scholar 

  19. J Bardeen, L Cooper and R Schrieffer, Phys. Rev. 106, 162 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  20. H Suhl, B T Matthias and L R Walker, Phys. Rev. Lett. 3, 552 (1959)

    Article  ADS  Google Scholar 

  21. V A Moskalenko, Phys. Met. Metallogr. 8, 25 (1959)

    Google Scholar 

  22. J Kondo, Prog. Theor. Phys. 29, 1 (1963)

    Article  ADS  Google Scholar 

  23. Y Kamihara, H Hiramatsu, M Hirano, R Kawamura, H Yanagi, T Kamiya and H Hosono, J. Am. Chem. Soc. 128, 10012 (2006)

    Article  Google Scholar 

  24. Y Kamihara, T Watanabe, M Hirano and H Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  25. J Paglione and R L Greene, Nat. Phys. 6, 645 (2010)

    Article  Google Scholar 

  26. E J Nicol and J P Carbotte, Phys. Rev. B 71, 054501 (2005)

    Article  ADS  Google Scholar 

  27. M E Zhitomirsky and V H Dao, Phys. Rev. B 69, 054508 (2004)

    Article  ADS  Google Scholar 

  28. L P Gor’kov, J. Exp. Theor. Phys. 36, 1918 (1959); translated in Sov. Phys. JETP 9, 1364 (1959)

  29. V Ambegaokar and A Baratoff, Phys. Rev. Lett. 10, 486 (1963)

    Article  ADS  Google Scholar 

  30. Y Ota, M Machida, T Koyama and H Matsumoto, Phys. Rev. Lett. 102, 237003 (2009)

    Article  ADS  Google Scholar 

  31. Y Ota, N Nakai, H Nakamura, M Machida, D Inotani, Y Ohashi, T Koyama and H Matsumoto, Phys. Rev. B 81, 214511 (2010)

    Article  ADS  Google Scholar 

  32. Y -L Wang, L Shan, L Fang, P Cheng, C Ren and H-H Wen, Supercond. Sci. Technol. 22, 015018 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Innovative Development of Uzbekistan (M.I.D.U.), for financial support in the implementation of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orifjon Ganiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganiev, O., Yavidov, B. & Jalekeshov, A. Influence of pairing symmetry and multiple energy gaps on the behaviour of critical current through the Josephson junction. Pramana - J Phys 96, 110 (2022). https://doi.org/10.1007/s12043-022-02358-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02358-3

Keywords

PACS Nos

Navigation