Skip to main content
Log in

Numerical simulations for optimised flow of second-grade nanofluid due to rotating disk with nonlinear thermal radiation: Chebyshev spectral collocation method analysis

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The optimised flow of nanofluids is quite essential to improve the thermal mechanism of various reacting materials. The entropy generation phenomenon is essential to avoid heat losses in thermal transport systems, heating processes and various engineering devices. In this theoretical analysis, the aspects of entropy generation is presented for time-independent second-grade nanomaterials for disk flow which shows rotating behaviours. The second-grade constitutive relations result in highly nonlinear differential equations. The effects of MHD, nonlinear radiation and chemical reaction are manifested in momentum, heat and concentration equations. Precise numerical treatment for a wide range of non-Newtonian fluid parameters was adopted to tackle the resulting similarity equations. The fluctuation against the heat transfer system, wall shear stress and mass changing phenomenon were also calculated and examined for various parametrical values. The interesting Chebyshev spectral collocation numerical simulations were performed to present the solution. This research finds that the entropy generation and Bejan number show the same trend for temperature and concentration difference parameters, whereas an opposite trend can be seen for the fluid and magnetic parameters. Also, entropy generation increases for diffusion parameter and Brinkman number, but Bejan number shows two trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S U S Choi and J A Eastman, Proceed. ASME Int. Mech. Eng. Cong. Exposit. 66, 99 (1995)

    Google Scholar 

  2. J Buongiorno, J. Heat Transf. Trans. (ASME) 128, 240 (2006)

    Article  Google Scholar 

  3. K L Hsiao, Appl. Therm. Eng. 98, 850 (2016)

    Article  Google Scholar 

  4. S E Ahmed, Z A S Raizah and A M Aly, J. King Saud Uni.-Sci. 31, 352 (2019)

  5. M Turkyilmazoglu, Int. J. Heat Mass Transf. 106, 127 (2017)

    Article  Google Scholar 

  6. M M Rashidi, N Freidoonimehr, A Hosseini, O A Bég and T K Hung, Meccanica 49, 469 (2014)

    Article  Google Scholar 

  7. W Ibrahim, Results Phys. 7, 3723 (2017)

    Article  ADS  Google Scholar 

  8. H Waqas, M Imran, S U Khan, S A Shehzad and M A Meraj, Appl. Math. 40, 1255 (2019)

    Google Scholar 

  9. A Wakif, A Chamkha, T Thumma, I L Animasaun and R Sehaqui, J. Therm. Anal. Calorim. 143, 1201 (2021)

    Article  Google Scholar 

  10. M G Reddy, M V V L S Rani, K G Kumar, B C Prasannakumar and H J Lokesh, Physica A 551, 123975 (2020)

    Article  MathSciNet  Google Scholar 

  11. M I Khan, S U Khan, M Jameel, Y M Chu, I Tlili and S Kadry, Surf. Interfaces 22, 100849 (2021)

    Article  Google Scholar 

  12. R Ali, A Akgül and M I Asjad, Pramana – J. Phys. 94, 131 (2020)

    Google Scholar 

  13. Y M Chu, N Khan, M I Khan, K Al-Khaled, N Abbas, S U Khan, M S Hashmi, S Qayyum and S Kadry, Alex. Eng. J. 60, 1851 (2021)

    Article  Google Scholar 

  14. M Hassan, E R El-Zahar, S U Khan, Mo. Rahimi-Gorji and A Ahmad, Numer. Meth. Partial Diff. Equ. 37, 1234 (2021)

  15. A Bejan, J. Heat Transfer 101, 718 (1979)

    Article  Google Scholar 

  16. S M Seyyedi, A S Dogonchi, M H Tilehnoee, M Waqas and D D Ganji, Appl. Therm. Eng. 168, 114789 (2020)

    Article  Google Scholar 

  17. S Das, R N Jana and O D Makinde, J. Heat Mass Transfer 2, 51 (2015)

    Google Scholar 

  18. A Riaz, A Gul, I Khan, K Ramesh, S U Khan, D Baleanu and K S Nisar, Coatings 10, 213 (2020)

    Article  Google Scholar 

  19. G M A R Rashed, J. Appl. Math., 2016, 1748312 (2016)

    Article  Google Scholar 

  20. N Khan, I Riaz, M S Hashmi, S A Musmar, S U Khan, Z Abdelmalek and I Tlili, Entropy 22, 495 (2020)

    Article  ADS  Google Scholar 

  21. M Turkyilmazoglu, J. Non-Equil. Thermodyn. 45 , 247 (2020)

    Google Scholar 

  22. M K Nayak, S Shaw, M I Khan, O D Makinde, Y M Chu and S U Khan, Alex. Eng. J. 60, 4067 (2021)

    Article  Google Scholar 

  23. N B Khan, M I Khan, W A Khan and M K Nayak, Indian J. Phys. 95, 717 (2021)

    Article  ADS  Google Scholar 

  24. M Turkyilmazoglu, Comput. Meth. Prog. Biomed. 187, 105171 (2020)

    Article  Google Scholar 

  25. M Turkyilmazoglu, Int. J. Therm. Sci. 50, 2264 (2011)

    Article  Google Scholar 

  26. T Hayat, M Kanwal, S Qayyum and A Alsaedi, Physica A 544, 123437 (2020)

    Article  MathSciNet  Google Scholar 

  27. M Nazeer, F Hussain, M I Khan, A U Rehman, E R El-Zahar, Y M Chu and M Y Malik, Appl. Math. Comput. 420, 126868 (2022)

    Google Scholar 

  28. Y M Chu, B M Shankaralingappa, B J Gireesha, F Alzahrani, M I Khan and S U Khan, Appl. Math. Comput. 419, 126883 (2022)

    Google Scholar 

  29. T-H Zhao, M I Khan and Y-M Chu, Math. Meth. Appl. Sci.,https://doi.org/10.1002/mma.7310 (2021)

  30. R J P Gowda, A M Jyothi, R N Kumar, B C Prasannakumara and I E Sarris, Int. J. Appl. Comput. Math. 7, 226 (2021)

    Article  Google Scholar 

  31. M Waqas, M I Khan, T Hayat, M M Gulzar and A Alsaedi, Chaos Solitons Fractals 130, 109415 (2020)

  32. R N Kumar, S Suresha, R J P Gowda, S B Megalamani and B C Prasannakumara, Pramana – J. Phys. 95, 180 (2021)

    Google Scholar 

  33. S Qayyum, M I Khan, T Hayat and A Alsaedi, Physica B 534, 173 (2018)

    Article  ADS  Google Scholar 

  34. A M Jyothi, R N Kumar, R J P Gowda and B C Prasannakumara, Commun. Theor. Phys. 73, 095005 (2021)

    Article  ADS  Google Scholar 

  35. M I Khan, F Alzahrani and A Hobiny, J. Mater. Res. Technol. 9, 7335 (2020)

    Article  Google Scholar 

  36. R J P Gowda, R N Kumar, A M Jyothi and B C Prasannakumara, Appl. Math. Mech. 101, e202000372 (2021)

    Google Scholar 

  37. R J P Gowda, R N Kumar, A M Jyothi, B C Prasannakumara and I E Sarris, Processes 9, 702 (2021)

    Article  Google Scholar 

  38. M Iqbal, A Ghaffari and I Mustafa, Sci. Iran. 26, 3905 (2019)

    Google Scholar 

  39. I Mustafa, T Javed, A Ghaffari and H Khalil, Pramana – J. Phys. 93, 53 (2019)

    Google Scholar 

  40. A Ghaffari, I Mustafa and T Javed, Nihon Reoroji Gakkaishi 46, 155 (2018)

    Article  Google Scholar 

  41. A Majeed, T Javed, A Ghaffari and M M Rashidi, Alex. Eng. J. 54, 1029 (2015)

    Article  Google Scholar 

  42. L N Trefethen, Spectral methods in MATLAB (SIAM, Philadelphia, 2000)

    Book  Google Scholar 

  43. A Abbasi, W Farooq, T Muhammad, M I Khan, S U Khan, F Mabood, S BiBi, Chem. Phys. Lett. 783, 139041 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at Umm Al-Quara University for supporting this work under Grant No. 22UQU4290491DSR02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Ijaz Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsallami, S.A.M., Usman, Khan, S.U. et al. Numerical simulations for optimised flow of second-grade nanofluid due to rotating disk with nonlinear thermal radiation: Chebyshev spectral collocation method analysis. Pramana - J Phys 96, 98 (2022). https://doi.org/10.1007/s12043-022-02337-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02337-8

Keywords

PACS Nos

Navigation