Skip to main content
Log in

Physical importance of entropy generation in fluid flow (Williamson) with nonlinear radiative heat flux

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present analysis deals with two-dimensional magneto-Williamson liquid bounded by a stretching surface. Impacts of viscous dissipation, heat generation/absorption and nonlinear thermal radiation are also considered. Entropy generation minimization in flow of Williamson fluid is discussed. Convergent solutions of resulting problems are obtained. Nusselt number, skin friction coefficient, temperature and velocity are discussed. Velocity reduces for larger Williamson fluid parameter. Temperature enhances for larger radiation parameter and Biot number. Entropy generation and Bejan number are increased for larger Biot number, while both have opposite behavior for Brinkman number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. R V Williamson Indust. Eng. Chemist. Resear. 21 1108 (1929)

  2. K Vajravelu, S Sreenadh, K Rajanikanth and C Lee Nonlinear Analysis; Real World Appl. 13 2804 (2012).

  3. S Nadeem and S Akram Commu. Nonlinear Sci. Numer. Simul. 15 1705 (2010)

    Article  ADS  Google Scholar 

  4. S Nadeem and S Akram Math. Comp. Model. 52 107 (2010)

    Article  Google Scholar 

  5. D Irene and S Giambattista Int. J. Rock Mech. Mining Sci. 44 271 (2007)

    Article  Google Scholar 

  6. T Hayat, M I Khan, M Farooq, A Alsaedi, M Waqas and T Yasmeen Int. J. Heat Mass Transf. 99 702 (2016)

    Article  Google Scholar 

  7. M I Khan, M Waqas, T Hayat and A Alsaedi J. Colloid Interface Sci. 498 85 (2017)

    Article  ADS  Google Scholar 

  8. M I khan, S Ullah, T Hayat, M I Khan and A Alsaedi J. Mol. Liq. 260 279 (2018)

  9. M Turkyilmazoglu Appl. Math. Mod. 71 1 2019

  10. M Tamoor, M Waqas, M I Khan, A Alsaedi and T Hayat Results Phys. 7 498 (2017)

    Google Scholar 

  11. M I Khan, M Waqas, T Hayat, M I Khan and A Alsaedi J. Mol. Liq. 246 259 (2017)

    Article  Google Scholar 

  12. T Hayat, M W A Khan, A Alsaedi and M I Khan Colloid Polymer Sci. 295 2439 (2017)

    Google Scholar 

  13. M Turkyilmazoglu Commun. Nonlinear Sci. Numer. Simul. 63 373 (2018)

  14. M I Khan, T Hayat, M Waqas, M I Khan and A Alsaedi J. Mol. Liq. 256 108 (2018)

    Article  Google Scholar 

  15. M. Turkyilmazoglu Archives Mech. 71 49 (2019)

  16. M I Khan, M Tamoor, T Hayat and A Alsaedi Results Phys. 7 1207 (2017)

    Google Scholar 

  17. M. Turkyilmazoglu Zeitschrift für Naturforschung A, 71 549 (2016)

  18. M I Khan, T Hayat, A Alsaedi, S Qayyum and M Tamoor Int. J. Heat Mass Transf. 127 829 (2018)

    Article  Google Scholar 

  19. T Hayat, S Qayyum, M I Khan and A Alsaedi Int. J. Hydrogen Energy, 42 29107 (2017)

    Article  Google Scholar 

  20. T Hayat, M I Khan, A Alsaedi and M I Khan Int. Commu. Heat Mass Transf. 89 190 (2017)

    Article  Google Scholar 

  21. H. Alfven Nature 150 405 (1942)

  22. S A Shehzad, A Alsaedi and T Hayat Plos One, 8 e68139 (2013)

    Google Scholar 

  23. T Hayat, S A Shehzad, M B Ashraf and A Alsaedi J. Thermophys. Heat Transf. 27 733 (2013)

    Article  Google Scholar 

  24. M Sheikholeslami, M Gorji-Bandpay and D D Ganji Int. Commun. Heat Mass Transf. 39 978 (2012)

    Article  Google Scholar 

  25. T Hayat, A Shafiq, M Nawaz and A Alsaedi Appl. Math. Mech. 33 749 (2012)

    Article  Google Scholar 

  26. M M Rashidi and E Erfani Eng. Comput. 29 562 (2012)

    Article  Google Scholar 

  27. A Bejan J. Heat Transf. 101 718 (1979)

  28. T Hayat, M Rafiq, B Ahmad and S Asghar Int. J. Heat Mass Transf. 108 1775 (2017)

    Article  Google Scholar 

  29. J Guo, M Xu, J Cai and X Huai Energy, 36 5416 (2011)

    Article  Google Scholar 

  30. T Hayat, S Qayyum, M I Khan and A Alsaedi Phys. Fluid. 30 017101 (2018)

    Article  ADS  Google Scholar 

  31. A Noghrehabadi, M R Saffarian, R Pourrajab and M Ghalambaz J. Mech. Sci. Technol. 27 927 (2013)

    Article  Google Scholar 

  32. M I Khan, A Kumar, T Hayat, M Waqas and R Singh J. Mol. Liq. 278 677 (2019)

    Article  Google Scholar 

  33. S Qayyum, M I Khan, T Hayat and A Alsaedi Phys. B: Condensed Matt. 534 173 (2018)

  34. K Ghasemi and M Siavashi J. Magn. Magnet. Mater. 442 474 (2017)

    Article  ADS  Google Scholar 

  35. S Qayyum, M I Khan, T Hayat, A Alsaedi and M Tamoor Int. J. Heat Mass Transf. 127 933 (2018)

    Article  Google Scholar 

  36. T Hayat, M I Khan, T A Khan, M I Khan, S Ahmad and A Alsaedi J. Mol. Liq. 265 629 (2018)

    Article  Google Scholar 

  37. M I Khan, T Hayat, M I Khan, M Waqas and A Alsaedi J. Phys. Chemist. Solid. 125 153 (2019)

    Article  ADS  Google Scholar 

  38. O D Makinde and A S Eegunjobi J. Porous Media, 19 799 (2016)

    Article  Google Scholar 

  39. S Qayyum, T Hayat, M I Khan, M I Khan and A Alsaedi J. Mol. Liq. 262 261 (2018)

    Article  Google Scholar 

  40. T Hayat, M I Khan, S Qayyum, M I Khan and A Alsaedi J. Mol. Liq. 264 375 (2018)

    Article  Google Scholar 

  41. J Sui, L Zheng, X Zhang and G Chen Int. J. Heat Mass Transf. 85 1023 (2015)

    Article  Google Scholar 

  42. K L Hsiao Energy, 130 486 (2017)

  43. T Hayat, M Tamoor, M I Khan and A Alsaedi Results Phys. 6 1031 (2016)

    Article  ADS  Google Scholar 

  44. K L Hsiao Appl. Thermal Eng. 112 1281 (2017)

  45. T Hayat, M I Khan, M Farooq, N Gull and A Alsaedi J. Mol. Liq. 223 1297 (2016)

    Article  Google Scholar 

  46. K L Hsiao Int. J. Heat Mass Transf. 112 983 (2017)

  47. T Hayat, S Ahmad, M I Khan and A Alsaedi Phys. B: Condensed Matt. 537 116 (2018)

  48. K L Hsiao Appl. Thermal Eng. 138 850 (2016)

  49. T Hayat, M Khan, M I Khan, A Alsaedi and A Ayub Plos One, 12 e0180976 (2017)

    Article  Google Scholar 

  50. M Waqas J. Mag. Magnet. Mater. 493 165646 (2020)

  51. T Hayat, M I Khan, S Qayyum and A Alsaedi Chinese J. Phys. 55 2501 (2017)

    Article  ADS  Google Scholar 

  52. M Waqas Int. J. Numer. Method. Heat Fluid Flow, https://doi.org/10.1108/hff-12-2018-0797 (2019)

  53. T Hayat, M I Khan, S Qayyum and A Alsaedi Colloid. Surf. A: Physicoch. Eng. Aspect. 539 335 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Imran Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N.B., Khan, M.I., Khan, W.A. et al. Physical importance of entropy generation in fluid flow (Williamson) with nonlinear radiative heat flux. Indian J Phys 95, 717–724 (2021). https://doi.org/10.1007/s12648-020-01728-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01728-0

Keywords

PACS Nos.

Navigation