Skip to main content
Log in

Soliton propagation through three types of Fibonacci-ordered photonic multilayers in the fractional medium

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, we have studied the propagation dynamics of a secant soliton travelling through six types of Fibonacci and parabolic-Fibonacci-ordered multilayers. Although the propagation of solitons in different mediums such as graded-index inhomogeneous media is considered, their propagation in the fractal geometries has not yet been addressed. In this way, we utilise a fractional nonlinear Schrödinger equation formalism. Then, a numerical split-step Fourier method is employed to solve the resulting equation. Besides, we used a wave expansion method to calculate the band structure of the system by solving the stationary Schrödinger equation at different wavenumbers, because the refraction index that governs the beam divergence can be described using the band structure curvature. Our motivation is to engineer the band structure curvature that is an important parameter in obtaining the desired waveguiding properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J S Russell, Report on waves, Report of the 14th Meeting of the British Association for the Advancement of Science, York, 311 (1844)

  2. D J Korteweg and G de Vries, Phil. Mag. 39, 422 (1895)

    Article  Google Scholar 

  3. N J Zabusky and M D Kruskal, Phys. Rev. Lett. 15, 240 (1965)

    Article  ADS  Google Scholar 

  4. Z Y Yang, L C Zhao, T Zhang, Y H Li and R H Yue, Opt. Commun. 283, 3768 (2010)

    Article  ADS  Google Scholar 

  5. J R He and L Yi, Opt. Commun. 320, 129 (2014)

    Article  ADS  Google Scholar 

  6. G Wang, K Yang, H Gu, F Guan and A H Kara, Nucl. Phys. B 953, 114956 (2020)

    Article  Google Scholar 

  7. G Wang, Appl. Math. Lett. 113, 106768 (2021)

    Article  Google Scholar 

  8. G Wang and A H Kara, Phys. Lett. A 383, 728 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. G Wang and A H Kara, Nonlin. Dyn. 81,753 (2015)

    Article  Google Scholar 

  10. G Wang, Y Liu, Y Wu and X Su, Fractals 28, 2050044 (2020)

    Article  ADS  Google Scholar 

  11. G Wang, Nonlin. Dyn. 104, 1595 (2021)

    Article  Google Scholar 

  12. A Neirameh, Comput. Math. Math. Phys. 56, 1336 (2016)

    Article  MathSciNet  Google Scholar 

  13. A Neirameh, Pramana- J. Phys. 85, 739 (2015)

  14. L Turgeman, S Carmi and E Barkai, Phys. Rev. Lett. 103, 190201 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. N Bouzid, M Merad and D Baleanu, Few-Body Syst. 57, 265 (2016)

    Article  ADS  Google Scholar 

  16. H Buluta, T A Sulaimana, H M Baskonusd, H Rezazadeh, M Eslami and M Mirzazadeh, Optik – Int. J. Light Electron Opt. 172, 20 (2018)

  17. L Esquivel and E I Kaikina, Nonlinearity 29, 2082 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. B H Wang, P H Lu, C Q Dai and Y X Chen, Results Phys. 17, 103036 (2020)

  19. M N Alam and X Li, Phys. Scr. 95, 045224 (2020)

    Article  ADS  Google Scholar 

  20. R Herrmann, Phys. Lett. A 372, 5515 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. R Ahmad El-Nabulsi, Few-Body Syst. 61, 25 (2020)

  22. S T R Rizvi, K Ali, S Bashir, M Younis, R Ashraf and M O Ahmad, Superlatt. Microstruct. 107, 234 (2017)

    Article  ADS  Google Scholar 

  23. N Laskin, Phys. Lett. A 268, 298 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. X Y Jiang, Eur. Phys. J. Special Topics 193, 61 (2011)

    Article  ADS  Google Scholar 

  25. M Al-Raeei and M Sayem El-Daher, Phys. Lett. A 383, 125831 (2019)

    Article  MathSciNet  Google Scholar 

  26. E K Lenzi, H V Ribeiro, M A F dos Santos, R Rossato and R S Mendes, J. Math. Phys. 54, 082107 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Y Luchko, J. Math. Phys. 54, 012111 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. X Yao and X Liu, Photon. Res. 6, 875 (2018)

    Article  Google Scholar 

  29. Y Meng, R Ning, K Ma, Z Jiao and Y Liu, Opt. Commun. 440, 68 (2019)

    Article  ADS  Google Scholar 

  30. M Al-Raeei and M Sayem El-Daher, AIP Adv. 10, 035305 (2020)

    Article  ADS  Google Scholar 

  31. M Moustapha Fall, F Mahmoudi and E Valdinoci, Nonlinearity 28, 1937 (2015)

  32. E Capelas de Oliveira and J Vaz Jr, J. Phys. A 44, 185303 (2011)

  33. D Zhang, Y Zhang, Z Zhang, N Ahmed, Y Zhang, F Li, M R Belic and M Xiao, Ann. Phys. (Berlin) 529, 1700149 (2017)

    Article  ADS  Google Scholar 

  34. L Zeng and J Zeng, Opt. Lett. 44, 2661 (2019)

    Article  ADS  Google Scholar 

  35. Y Zhan, X Liu, Milivoj, R Belić, W Zhong, Y Zhang and M Xiao, Phys. Rev. Lett. 115, 180403 (2015)

    ADS  Google Scholar 

  36. M Chen, S Zeng, D Lu, W Hu and Q Guo, Phys. Rev. E 98, 022211 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  37. P Li and C Dai, Ann. Phys. (Berlin) 532, 2000048 (2020)

    Article  ADS  Google Scholar 

  38. Z Wu, P Li, Y Zhang, H Guo and Y Gu, J. Opt. 21, 105602 (2019)

    Article  ADS  Google Scholar 

  39. X Huang, Z Deng, X Fu, J. Opt. Soc. Am. B 34, 976, (2017)

    Article  ADS  Google Scholar 

  40. L Zhang, C Li, H Zhong, C Xu, D Lei, Y Li and D Fan, Opt. Exp. 24, 14406 (2016)

    Article  ADS  Google Scholar 

  41. Z Wu, Y Zhang, J Ru and Y Gu, Results Phys. 16, 103008 (2020)

    Article  Google Scholar 

  42. K Zhan, Z Jiao, Y Jia and X Xu, IEEE Photon. J. 9, 6102508 (2017)

  43. Y Zhang, R Wang, H Zong, J Zhang, M R Belic and Y Zhang, Opt. Exp. 25, 32402 (2017)

    ADS  Google Scholar 

  44. S I Muslih and D Baleanu, J. Vib. Control 13, 1209 (2007)

    Article  MathSciNet  Google Scholar 

  45. S Z Rida, H M El-Sherbiny and A A M Arafa, Phys. Lett. A 372, 553 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  46. B Agheli and R Darzi, Opt. Quant. Electron. 49, 219 (2017)

    Article  Google Scholar 

  47. G Z Wu, L J Yu and Y Y Wang, Optik – Int. J. Light Electron Opt. 207, 164405 (2020)

  48. G Wang and T Xu, Laser Phys. 25, 055402 (2015)

    Article  ADS  Google Scholar 

  49. G Zhang, C Huang and M Li, Eur. Phys. J. Plus 133, 155 (2018)

    Article  Google Scholar 

  50. A Patra, Eur. Phys. J. Plus 133, 104 (2018)

    Article  ADS  Google Scholar 

  51. E M E Zayed and A G Al-Nowehy, Opt. Quant. Electron. 50, 164 (2018)

    Article  Google Scholar 

  52. A Neirameh, SeMA J. 73, 309 (2016)

    Article  MathSciNet  Google Scholar 

  53. A Patra, Math. Meth. Appl. Sci. 43, 10287 (2020)

    Article  Google Scholar 

  54. A Patra, Progr. Fract. Differ. Appl. 5, 125 (2019)

    Article  Google Scholar 

  55. Y Zhang, R Wang, H Zhong, J Zhang, M R Belić and Y Zhang, Sci. Rep. 7, 17872 (2017)

    Article  ADS  Google Scholar 

  56. G P Agrawal, Nonlinear fiber optics (Academic Press, San Diego, 2001)

    MATH  Google Scholar 

  57. J W Cooley and J W Tukey, Math. Comput. 19, 297 (1965)

    Article  Google Scholar 

  58. J A Fleck, J R Morris and M D Feit, Appl. Phys. 10, 129 (1976)

    Article  ADS  Google Scholar 

  59. O V Sinkin, R Holzlohner, J Zweck and C R Menyuk, J. Lightwave Technol. 21, 61 (2003)

    Article  ADS  Google Scholar 

  60. L Shu-Guang, X Guang-Long, Z Gui-Yao, H Ying, H Lan-Tian, H Ming-Lie, L Yan-Feng and W Qing-Yue, Chin. Phys. 15, 437 (2006)

    Article  Google Scholar 

  61. M D Feit and J A Fleck, Appl. Opt. 17, 3990 (1978)

    Article  ADS  Google Scholar 

  62. G P Agrawal, J. Appl. Phys. 56, 3100 (1984)

    Article  ADS  Google Scholar 

  63. Y T Lin, T F Duda and A E Newhall, J. Comput. Acoustics 21, 1250018 (2013)

    Article  MathSciNet  Google Scholar 

  64. M Lax, G P Agrawal, M Belic, B J Coffey and W H Louisell, J. Opt. Soc. Am. A 2, 732 (1985)

    Article  ADS  Google Scholar 

  65. M Amini, M Soleimani and M H Ehsani, Superlatt. Microstruct. 112, 680 (2017)

    Article  ADS  Google Scholar 

  66. A Suryanto and E van Groesen, J. Nonlin. Opt. Phys. Mater. 10, 143 (2001)

    Article  ADS  Google Scholar 

  67. F Garzia, C Sibilia and M Bertolotti, Opt. Commun. 139, 193 (1997)

    Article  ADS  Google Scholar 

  68. R H Lipson and C Lu, Eur. J. Phys. 30, S33 (2009)

    Article  Google Scholar 

  69. F Gaufillet and É Akmansoy, Opt. Mater. 47, 555 (2015)

    Article  ADS  Google Scholar 

  70. M Charbonneau-Lefort, E Istrate, M Allard, J Poon and E H Sargent, Phys. Rev. B 65, 125318 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalandari, M., Tehrani, D.H.T. & Solaimani, M. Soliton propagation through three types of Fibonacci-ordered photonic multilayers in the fractional medium. Pramana - J Phys 96, 41 (2022). https://doi.org/10.1007/s12043-021-02289-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02289-5

Keywords

PACS Nos

Navigation