Skip to main content
Log in

Pendulum controlled by a delayed proportional feedback force: Dynamical analysis and FPGA implementation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This work deals with the dynamical analysis and FPGA implementation of a pendulum controlled by a delayed proportional feedback force. The system has infinity equilibrium points and so the nature of these points is established according to the value of the gain of the controller. Analysis of the effect of delay on the linear system through a stability chart revealed stability switching. The Hopf bifurcation curves are presented gradually as the delay varies and thus confirm the analytical predictions. Furthermore, these bifurcation diagrams show the existence of complex behaviours and the coexistence of infinity strange attractors for different initial values. This system can be considered as a self-producer of attractors depending on the initial conditions. For certain values of the delay, the system exhibits the multiscroll behaviour which can be observed through the phase portraits. The FPGA implementation of the system is based on the VHDL hardware description which takes into account the RK4 resolution method with calculations under the 32-bit 16Q16 fixed-point number standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M Lakshmanan and D V Senthilkumar, Dynamics of nonlinear time-delay systems (Springer Science & Business Media, 2011)

  2. E T Metioguim, U G Ngouabo, S Noubissié, H B Fotsin and P Woafo, Commun. Nonlinear Sci. Numer. Simul. 62, 454 (2018)

    Article  MathSciNet  Google Scholar 

  3. U G Ngouabo, E T Metioguim and S Noubissie, Int. J. Electron. Lett. 8, 285 (2020)

    Article  Google Scholar 

  4. H Y Hu and Z H Wang, Dynamics of controlled mechanical systems with delayed feedback (Springer Science & Business Media, 2002)

  5. B R N Nana, Y Salissou and P Woafo, Chaos Solitons Fractals 23, 809 (2005)

    Article  ADS  Google Scholar 

  6. S Nasr, H Mekki and K Bouallegue, Chaos Solitons Fractals 118, 366 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. S Mobayen, S Vaidyanathan, A Sambas, S Kacar and Ü Çavuşoğlu, Iran. J. Sci. Technol. Trans. Electr. Eng. 43, 1 (2019)

    Article  Google Scholar 

  8. T Erneux, Applied delay differential equations (Springer Science & Business Media, 2009)

  9. Y Yu, Z Zhang and Q Bi, Appl. Math. Model. 57, 448 (2018)

    Article  MathSciNet  Google Scholar 

  10. P R N Tuwa and P Woafo, J. Vib. Control 24, 2020 (2018)

    Article  MathSciNet  Google Scholar 

  11. L Wang, W B Liu and H L Dai, Int. J. Eng. Sci. 75, 79 (2014)

    Article  Google Scholar 

  12. G I K Taffo, M S Siewe and C Tchawoua, Chaos Solitons Fractals 87, 226 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. J Milton, J L Cabrera, T Ohira, S Tajima, Y Tonosaki, C W Eurich and S A Campbell, Chaos 19, 026110 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. S Yao, L Ding, Z Song and J Xu, Nonlinear Dyn95, 1549 (2019)

    Article  Google Scholar 

  15. Z Song, C Wang and B Zhen, Nonlinear Dyn85, 2099 (2016)

    Article  Google Scholar 

  16. Y Yu, Z Zhang and Q Bi, Appl. Math. Model. 57, 448 (2018).

    Article  MathSciNet  Google Scholar 

  17. C H Miwadinou, A V Monwanou and J B C Orou, Int. J. Bifurc. Chaos 25, 1550024 (2015)

    Article  Google Scholar 

  18. S F Wen, J F Chen and S Q Guo, Heteroclinic bifurcation behaviors of a Duffing oscillator with delayed feedback (Shock and Vibration, 2018)

  19. A Buscarino, L Fortuna, M Frasca and G Sciuto, IEEE Trans. Circuits Syst. I: Regul. Pap. 58, 1888 (2011)

    Article  MathSciNet  Google Scholar 

  20. D Biswas and T Banerjee, Nonlinear Dyn. 83, 2331 (2016)

    Article  Google Scholar 

  21. D Valli, B Muthuswamy, S Banerjee, M R K Ariffin, A W A Wahab, K Ganesan, C K Subramaniam and J Kurths, Eur. Phys. J. Spec. Top. 223, 1465 (2014)

    Article  Google Scholar 

  22. F Wang, R Wang, H H C Iu, C Liu and T Fernando, IEEE Trans. Circuits Systems II: Express Briefs 66, 2062 (2019)

    Article  Google Scholar 

  23. Q Lai, P D K Kuate, F Liu and H H C Iu, IEEE Trans. Circuits Systems II: Express Briefs 67, 1129 (2019)

    Article  Google Scholar 

  24. J C Sprott, S Jafari, A J M Khalaf and T Kapitaniak,  Eur. Phys. J. Spec. Top. 226, 1979 (2017)

  25. K Rajagopal, J M Munoz-Pacheco, V T Pham, D V Hoang, F E Alsaadi and F E Alsaadi, Eur. Phys. J. Spec. Top 227, 811 (2018)

  26. J C Sprott, Am. J. Phys. 68, 758 (2000)

    Article  ADS  Google Scholar 

  27. F F Kemwoue, J M Dongo, R N Mballa, C L Gninzanlong, M W Kemayou, B Mokhtari, F Biya-Motto and J Atangana, Chaos Solitons Fractals 134, 109689 (2020)

    Article  MathSciNet  Google Scholar 

  28. İ Koyuncu, İ Şahin, C Gloster and N K Sarıtekin, J. Circuits Systems Comput. 26, 1750015 (2017)

    Article  Google Scholar 

  29. E Tlelo-Cuautle, J J Rangel-Magdaleno, A D Pano-Azucena, P J Obeso-Rodelo and J C Nuñez-Perez, Commun. Nonlinear Sci. Numer. Simul. 27, 66 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. H R Abdolmohammadi, A J M Khalaf, S Panahi, K Rajagopal, V T Pham and S Jafari, Pramana – J. Phys. 90, 1 (2018)

  31. U G Ngouabo, S Noubissié, H B Fotsin and P Woafo, Pramana – J. Phys. 94, 12 (2020)

    Article  Google Scholar 

  32. R Chiu, D López-Mancilla, C E Castañeda, O Orozco-López, E Villafaña-Rauda and R Sevilla-Escoboza, Chaos Solitons Fractals 119, 255 (2019)

    Article  ADS  Google Scholar 

  33. V T Pham, L Fortuna and M Frasca, Nonlinear Dyn67, 345 (2012)

    Article  Google Scholar 

  34. V K Tamba, S T Kingni, G F Kuiate, H B Fotsin and P K Talla, Pramana – J. Phys. 91, 12 (2018)

    Article  ADS  Google Scholar 

  35. Q Lai, X W Zhao, K Rajagopal, G Xu, A Akgul and E Guleryuz, Pramana – J. Phys. 90, 12 (2018)

    Article  ADS  Google Scholar 

  36. L K Kengne, J Kengne and J R M Pone, Pramana – J. Phys. 94, 25 (2020)

    Article  Google Scholar 

  37. H Zang, Z Gu, T Lei, C Li and S Jafari, Pramana – J. Phys94, 1 (2020)

    Article  Google Scholar 

  38. J Kengne, Z T Njitacke and H B Fotsin, Nonlinear Dyn83, 751 (2016)

    Article  Google Scholar 

  39. F Li and C Yao, Nonlinear Dyn84, 2305 (2016)

    Article  Google Scholar 

  40. W K Tang, G Q Zhong, G Chen and K F Man, IEEE Trans. Circuits System I Fund. Theory Appl. 48, 1369 (2001)

    Article  Google Scholar 

  41. M E Yalçin, Chaos Solitons Fractals 34, 1659 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. J Ma, X Wu, R Chu and L Zhang, Nonlinear Dyn. 76, 1951 (2014)

    Article  Google Scholar 

  43. J Lü and G Chen, Int. J. Bifurc. Chaos 16, 775 (2006)

    Article  Google Scholar 

  44. V K Tamba, R Kengne, S T Kingni and H B Fotsin, Recent advances in chaotic systems and synchronization (Academic Press, 2019)

  45. X Zang, S Iqbal, Y Zhu, X Liu and J Zhao, Int. J. Adv. Robotic Syst. 13, 60 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchamdjeu, F.X.N., Ngouabo, U.G., Noubissie, S. et al. Pendulum controlled by a delayed proportional feedback force: Dynamical analysis and FPGA implementation. Pramana - J Phys 96, 13 (2022). https://doi.org/10.1007/s12043-021-02259-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02259-x

Keywords

PACS Nos

Navigation