Skip to main content
Log in

Enhanced Raman gain coefficients (under steady-state and transient regimes) of semiconductor magnetoplasmas

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Assuming the origination of stimulated Raman scattering (SRS) in Raman susceptibility, we obtain expressions for Raman gain coefficients (under steady-state and transient regimes) of semiconductor magnetoplasmas under various geometrical configurations. The threshold value of excitation intensity and most favourable value of pulse duration (above which transient Raman gain vanishes) are estimated. For numerical calculations, we consider n-InSb crystal at 77 K temperature as a Raman-active medium exposed to a frequency doubled pulsed CO\(_{2}\) laser. The variation of Raman gain coefficients on doping concentration, magnetostatic field and its inclination, scattering angle and pump pulse duration have been explored in detail with an aim to determine suitable values of these controllable parameters to enhance Raman gain coefficients at lower threshold intensities and to establish the suitability of semiconductor magnetoplasmas as hosts for compression of scattered pulses and fabrication of efficient Raman amplifiers and oscillators based on Raman nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E Garmire, Opt. Exp. 21, 30532 (2013)

    Article  ADS  Google Scholar 

  2. T Kobayashi, Photonics 5, 19 (2018)

    Article  Google Scholar 

  3. Y Ji, H Wang, J Cui, M Yu, Z Yang and L Bai, Photon. Netw. Commun. 38, 14 (2019)

    Article  Google Scholar 

  4. M Ono, M Hata, M Tsunekawa, K Nozaki, H Sumikura, H Chiba and M Notomi, Nature Photon. 14, 37 (2020)

    Article  ADS  Google Scholar 

  5. T Hao, Y Liu, J Tang, Q Cen, W Li, N Zhu, Y Dai and J Capmany, Adv. Photon. 2, 044001 (2020)

    Article  ADS  Google Scholar 

  6. R W Boyd, Nonlinear optics, 3rd Edn (Academic Press, New York, 2008)

    Google Scholar 

  7. D Tan, K N Sharafudeen, Y Yue and J Qiu, Prog. Mater. Sci. 76, 154 (2016)

    Article  Google Scholar 

  8. O Frazao, C Correia, M R M Racco Giraldi, M B Marques, H M Salgado, M A G Martinez, J C W A Costa, A P Barbero and J M Baptista, The Open Opt. J. 3, 1 (2009)

  9. E Garmire, New J. Phys. 19, 011003 (2017)

  10. D C Hanna, M A Yuratich and D Cottor, Nonlinear optics of free atoms and molecules, Springer Series in optical science (Springer-Verlag, Berlin, 1979) Vol. 17, Ch. 7.

  11. T R Loree, R C Sze, D L Barker and P B Scott, IEEE J. Quantum Electron. 15, 337 (1979)

    Article  ADS  Google Scholar 

  12. J E Rothenberg, J F Young and S E Harris, Opt. Lett. 6, 363 (1981)

    Article  ADS  Google Scholar 

  13. R S Das and T K Agrawal, Vib. Spectrosc57, 163 (2011)

    Article  Google Scholar 

  14. Y Li, B Shen, S Li, Y Zhao, J Qu and L Liu, Adv. Biol. 5, 2000184 (2021)

    Article  Google Scholar 

  15. J Singh, S Dahiya and M Singh, Mater. Today: Proc. 46, 5844 (2021)

    Article  Google Scholar 

  16. S Guha and N Apte, PramanaJ. Phys. 16, 99 (1981)

  17. P Sen and P K Sen, Phys. Rev. B 31, 1034 (1985)

    Article  ADS  Google Scholar 

  18. A Neogi and S Ghosh, Phys. Rev. B 44, 13074 (1991)

    Article  ADS  Google Scholar 

  19. M Singh, P Aghamkar, N Kishore, P K Sen and M R Perrone, Phys. Rev. B 76, 012302 (2007)

    Article  ADS  Google Scholar 

  20. P Kumar and V K Tripathi, J. Appl. Phys. 107, 103314 (2010)

    Article  ADS  Google Scholar 

  21. V P Singh and M Singh, Opt. Quant. Electron. 48, 479 (2016)

    Article  Google Scholar 

  22. K S Srivastava, R Srivastava, A Sinha, A Tandon and A N Nigam, Phys. Rev. B 38, 1357 (1988)

    Article  ADS  Google Scholar 

  23. Y Vida, T Nagahara, S Zaitsu, M Mateus and T Imasaka, Opt. Exp. 14, 3083 (2006)

    Article  ADS  Google Scholar 

  24. C H Bryanat and M Golombok, Opt. Lett. 16, 602 (1991)

    Article  ADS  Google Scholar 

  25. Y Ping, R K Kirkwood, T L Wang, D S Clark, S C Wilks, N Meezan, R L Berger, J Wurtele, N J Fisch, V M Malkin, E J Valeo, S F Martins and C Joshi, Phys. Plasmas 16, 123113 (2009)

    Article  ADS  Google Scholar 

  26. I Tsymbalov, D Gorlova and A Savel’ev, Phys. Rev. E 102, 063206 (2020)

    Article  ADS  Google Scholar 

  27. R L Carman, F Shimizu, C S Wang and N Bloembergen, Phys. Rev. A 2, 60 (1970)

    Article  ADS  Google Scholar 

  28. S G Chefranov and A S Chefranov, Hydrodynamic methods and exact solutions in applications to the electromagnetic field theory in medium, in: Nonlinear optics – Novel results in field theory in medium edited by B Lembrikov (Intechopen, UK, 2020)

  29. S S Mitra and N E Massa, Handbook on semiconductors edited by T S Moss (North-Holland, Amsterdam, 1982)

    Google Scholar 

  30. J M Mayer, F J Bartoli and M R Kruer, Phys. Rev. B 21, 1559 (1980)

    Article  ADS  Google Scholar 

  31. M Kruer, L Esterowitz, F Bartoli and R Allea, The role of carrier diffusion in laser damage of semiconductor materials, in: Laser induced damage in optical materials edited by A J Glass and A H Guenther, NBS Special Publication No. 509 (Washington,1977) pp. 473–480

  32. T F Boggess, A Smirl, S Moss, I Boyd and E V Stryland, IEEE J. Quantum Electron. 21, 488 (1985)

    Article  ADS  Google Scholar 

  33. D Phol and W Kaiser, Phys. Rev. B 1, 31 (1970)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to Sh. Vijay Singh Dahiya, Director General, Higher Education Department, Panchkula (Haryana) for his kind cooperation and Mrs Neelam Sheoran, Principal, Government College Matanhail, Jhajjar (Haryana) for valuable ideas to carry out this work.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Dahiya, S. & Singh, M. Enhanced Raman gain coefficients (under steady-state and transient regimes) of semiconductor magnetoplasmas. Pramana - J Phys 95, 208 (2021). https://doi.org/10.1007/s12043-021-02235-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02235-5

Keywords

PACS Nos

Navigation