Skip to main content
Log in

Enhanced Raman gain coefficients of semiconductor magneto-plasmas

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Assuming the origin of SRS in Raman susceptibility, we obtain expressions for Raman gain coefficients (under steady-state and transient regimes) of semiconductors magneto-plasmas under various geometrical configurations. The threshold value of excitation intensity and most favourable value of pulse duration (above which transient Raman gain vanishes) are estimated. For numerical calculations, we consider n-InSb crystal at 77 K temperature as a Raman active medium exposed to a frequency doubled pulsed CO2 laser. The variation of Raman gain coefficients on doping concentration, magnetostatic field and its inclination, scattering angle, and pump pulse duration are explored. Efforts are directed towards to optimize these controllable parameters to enhance Raman gain coefficients at lower threshold intensity. The suitability of semiconductor magneto-plasmas as hosts for compression of scattered pulses and fabrication of efficient Raman amplifiers and oscillators is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Garmire, Opt. Exp. 21, 30532 (2013)

    Article  Google Scholar 

  2. T. Kobayashi, Photonics 5, 19 (2018)

    Article  Google Scholar 

  3. Y. Ji, H. Wang, J. Cui, M. Yu, Z. Yang, L. Bai, Photon. Netw. Commun. 38, 14 (2019)

    Article  Google Scholar 

  4. M. Ono, M. Hata, M. Tsunekawa, K. Nozaki, H. Sumikura, H. Chiba, M. Notomi, Nat. Photonics 14, 37 (2020)

    Article  ADS  Google Scholar 

  5. T. Hao, Y. Liu, J. Tang, Q. Cen, W. Li, N. Zhu, Y. Dai, J. Capmany, J. Yao, Adv. Photonics 2, 044001 (2020)

    Article  ADS  Google Scholar 

  6. R.W. Boyd, Nonlinear optics, 3rd edn. (Academic Press, New York, 2008)

    Google Scholar 

  7. D. Tan, K.N. Sharafudeen, Y. Yue, J. Qiu, Prog. Mat. Sci. 76, 154 (2016)

    Article  Google Scholar 

  8. O. Frazao, C. Correia, M.R.M. Racco Giraldi, M.B. Marques, H.M. Salgado, M.A.G. Martinez, J.C.W.A. Costa, A.P. Barbero, J.M. Baptista, Open Opt. J. 3, 1 (2009)

    Article  Google Scholar 

  9. E. Garmire, New J. Phys. 19, 011003 (2017)

    Article  ADS  Google Scholar 

  10. D.C. Hanna, M.A. Yuratich, D. Cottor, Nonlinear optics of free atoms and molecules, Springer series, in optical science (Springer-Verlag, 1979)

    Book  Google Scholar 

  11. T.R. Loree, R.C. Sze, D.L. Barker, P.B. Scott, IEEE J. Quantum Electron. 15, 337 (1979)

    Article  ADS  Google Scholar 

  12. J.E. Rothenberg, J.F. Young, S.E. Harris, Opt. Lett. 6, 363 (1981)

    Article  ADS  Google Scholar 

  13. R.S. Das, T.K. Agrawal, Vib Spectrosc. 57, 163 (2011)

    Article  Google Scholar 

  14. Y. Li, B. Shen, S. Li, Y. Zhao, J. Qu, L. Liu, Adv. Biology 5, 2000184 (2021)

    Article  Google Scholar 

  15. J. Singh, S. Dahiya, M. Singh, Mater. Today: Proc. 37, 2318 (2021)

    Google Scholar 

  16. S. Guha, N. Apte, Pramana 16, 99 (1981)

    Article  ADS  Google Scholar 

  17. P. Sen, P.K. Sen, Phys. Rev. B 31, 1034 (1985)

    Article  ADS  Google Scholar 

  18. A. Neogi, S. Ghosh, Phys. Rev. B 44, 13074 (1991)

    Article  ADS  Google Scholar 

  19. M. Singh, P. Aghamkar, N. Kishore, P.K. Sen, M.R. Perrone, Phys. Rev. B 76, 012302 (2007)

    Article  ADS  Google Scholar 

  20. P. Kumar, V.K. Tripathi, J. Appl. Phys. 107, 103314 (2010)

    Article  ADS  Google Scholar 

  21. V.P. Singh, M. Singh, Opt. Quant. Electron. 48, 479 (2016)

    Article  Google Scholar 

  22. V. Sajal, D. Dahiya, V.K. Tripathi, Phys. Plasmas 14, 032109 (2007)

    Article  ADS  Google Scholar 

  23. V. Sajal, N.K. Sharma, R. Kumar, V.K. Tripathi, Opt. Commun. 285, 3563 (2012)

    Article  ADS  Google Scholar 

  24. S.J. Karttunen, R.R.E. Salomma, Laser Part. Beams 10, 75 (1992)

    Article  ADS  Google Scholar 

  25. K.S. Srivastava, R. Srivastava, A. Sinha, A. Tandon, A.N. Nigam, Phys. Rev. B 38, 1357 (1988)

    Article  ADS  Google Scholar 

  26. Y. Vida, T. Nagahara, S. Zaitsu, M. Mateus, T. Imasaka, Opt. Exp. 14, 3083 (2006)

    Article  Google Scholar 

  27. C.H. Bryanat, M. Golombok, Opt. Lett. 16, 602 (1991)

    Article  ADS  Google Scholar 

  28. Y. Ping, R.K. Kirkwood, T.L. Wang, D.S. Clark, S.C. Wilks, N. Meezan, R.L. Berger, J. Wurtele, N.J. Fisch, V.M. Malkin, E.J. Valeo, S.F. Martins, C. Joshi, Phys. Plasmas 16, 123113 (2009)

    Article  ADS  Google Scholar 

  29. I. Tsymbalov, D. Gorlova, A. Savel’ev, Phys. Rev. E 102, 063206 (2020)

    Article  ADS  Google Scholar 

  30. R.L. Carman, F. Shimizu, C.S. Wang, N. Bloembergen, Phys. Rev. A 2, 60 (1970)

    Article  ADS  Google Scholar 

  31. G. Vieux, S. Cipiccia, D.W. Grant, N. Lemos, P. Grant et al., Sci. Rep. 7, 2399 (2017)

    Article  ADS  Google Scholar 

  32. H. Rong, S. Xu, Y.H. Kuo, V. Sih, O. Cohen, O. Raday, M. Paniccia, Nat. Photon. 1, 232 (2007)

    Article  ADS  Google Scholar 

  33. Y. Shi, H. Qin, N.J. Fisch, Phys. Rev. E 95, 023211 (2017)

    Article  ADS  Google Scholar 

  34. J. Vieira, R.M.G.M. Trines, E.P. Alves, R.A. Fonseca, J.T. Mendonca, R. Bingham, P. Norreys, L.O. Silva, Nat. Commun. 7, 10371 (2016)

    Article  ADS  Google Scholar 

  35. S.G. Chefranov, A.S. Chefranov, Hydrodynamic methods and exact solutions in applications to the electromagnetic field theory in medium, in Nonlinear optics – novel results in field theory in medium. ed. by B. Lembrikov (Intechopen, UK, 2020)

    MATH  Google Scholar 

  36. S.S. Mitra, N.E. Massa, Handbook on Semiconductors, in North-Holland. ed. by T.S. Moss (Amsterdam, 1982)

    Google Scholar 

  37. D. von der Lind, M. Maier, W. Kaiser, Phys. Rev. 178, 11 (1969)

    Article  ADS  Google Scholar 

  38. E. Sali, P. Kinsler, G.H.C. New, K.J. Mendham, T. Halfmann, J.W.G. Tisch, J.P. Marangos, Phys. Rev. A 72, 013813 (2005)

    Article  ADS  Google Scholar 

  39. J. Gahlawat, S. Dahiya, M. Singh, Arab. J. Sci. Eng. 46, 721 (2021)

    Article  Google Scholar 

  40. J.M. Mayer, F.J. Bartoli, M.R. Kruer, Phys. Rev. B 21, 1559 (1980)

    Article  ADS  Google Scholar 

  41. M. Kruer, L. Esterowitz, F. Bartoli, R. Allea, The Role of Carrier Diffusion in Laser Damage of Semiconductor Materials, in Laser Induced Damage in Optical Materials, A.J. Glass, A.H. Guenther, (eds.), pp 473–480 (NBS Special Publication No. 509, Washington, 1977).

  42. T.F. Boggess, A. Smirl, S. Moss, I. Boyd, E.V. Stryland, IEEE J. Quantum Electron. 21, 488 (1985)

    Article  ADS  Google Scholar 

  43. D. Phol, W. Kaiser, Phys. Rev. B 1, 31 (1970)

    Article  ADS  Google Scholar 

  44. D. Kaganovich, B. Hafizi, J.P. Palastro, A. Ting, M.H. Helle, Y.H. Chen, T.G. Jones, D.F. Gordon, Phys. Plasmas 23, 123104 (2016)

    Article  ADS  Google Scholar 

  45. S. Ghosh, S. Dixit, Phys. Stat. Sol. (b) 131, 225 (1985)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are very thankful to Mrs. Neelam Sheoran, Principal, Government College Matanhail, Jhajjar (Haryana) for valuable ideas to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjeet Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopal, Sharma, B.S., Singh, J. et al. Enhanced Raman gain coefficients of semiconductor magneto-plasmas. Appl. Phys. A 128, 309 (2022). https://doi.org/10.1007/s00339-022-05430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05430-2

Keywords

Navigation