Skip to main content
Log in

Large-amplitude dust inertial Alfvén waves in an electron-depleted dusty plasma

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The existence of the large-amplitude dust inertial Alfvén waves (DIAWs) has been presented in an electron-depleted, two-fluid dust-ion plasma. Linear analysis shows that the DIAWs travel slower than the dust Alfvén waves. DIAWs are the obliquely (with respect to the external magnetic field) propagating oscillations of dust density, having the characteristics of a solitary wave. In order to observe the nonlinear behaviour of the DIAWs, the Sagdeev pseudopotential method has been used to derive the energy balance equation and from the expression of the Sagdeev pseudopotential, the existence conditions for the DIAWs have also been determined. It is observed that density rarefactions travelling at sub- and super-Alfvénic speeds are associated with DIAWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H Alfvén, Nature 150, 405 (1942)

    Article  ADS  Google Scholar 

  2. W H Bostick and M A Levine, Phys. Rev. Lett. 87, 671 (1952)

    ADS  Google Scholar 

  3. N F Cramer, The physics of Alfvén waves (Wiley-VCH Press, 2005)

  4. C K Goertz and R W Boswell, J. Geophys. Res. 84, 7239 (2014)

    Article  ADS  Google Scholar 

  5. D J Wu and J K Chao, J. Geophys. Res. 109, A06211 (2004)

    ADS  Google Scholar 

  6. C K Goertz, Rev. Geophys. 27, 271 (1989)

    Article  ADS  Google Scholar 

  7. M Horanyi and D A Mendis, Astrophys. J. 307, 800 (1989)

    Article  ADS  Google Scholar 

  8. A A Samarian, B W James, S V Vladimirov and N F Cramer, Phys. Rev. E 64, 025402 (2001)

    Article  ADS  Google Scholar 

  9. N C Adhikary, H Bailung, A R Pal, J Chutia and Y Nakamura, Phys. Plasmas 14, 103705 (2007)

    Article  ADS  Google Scholar 

  10. M M Hossen, M S Alam, S Sultana and A A Mamun, Eur. Phys. J. D 70, 252 (2016)

    Article  ADS  Google Scholar 

  11. K Singh, P Sethi and N Saini, Phys. Plasmas 25, 033705 (2018)

    Article  ADS  Google Scholar 

  12. K Singh, Y Ghai, N Kaur and N S Saini, Eur. Phys. J. D 72, 160 (2018)

    Article  ADS  Google Scholar 

  13. Y Ghai, N Kaur, K Singh and N S Saini, Plasma Sci. Technol. 20, 74005 (2018)

    Article  Google Scholar 

  14. K Singh and N S Saini, Phys. Plasmas 26, 113702 (2019)

    Article  ADS  Google Scholar 

  15. R K Shikha, N A Chowdhury, A Mannan and A A Mamun, Eur. Phys. J. D 73, 177 (2019)

    Article  ADS  Google Scholar 

  16. K Singh and N S Saini, Front. Phys. 8, 602229 (2020)

    Article  Google Scholar 

  17. R K Shikha, N A Chowdhury, A Mannan and A A Mamun, Contributions to plasma physics, https://doi.org/10.1002/ctpp.202000117 (2020)

  18. J Akter, N A Chowdhury, A Mannan and A A Mamun, Indian J. Phys., https://doi.org/10.1007/s12648-020-01927-9 (2021)

  19. S Mahmood, H Ur-Rehman, M Z Ali and A Basit, Contrib. Plasma Phys., https://doi.org/10.1002/ctpp.202000211 (2021)

  20. P K Shukla and A A Mamun, Introduction to dusty plasma physics (Institute of Physics, Bristol, 2002), pp. 3-4.

  21. C Yinhua, L Wei and M Y Yu, Phys. Rev. E 61(1), 809 (2000)

    Article  ADS  Google Scholar 

  22. A M Mirza, M A Mahmood and G Murtaza, New. J. Phys. 5, 116 (2003)

    Article  ADS  Google Scholar 

  23. S Mahmood and H Saleem, Phys. Lett. A 338, 345 (2005)

    Article  ADS  Google Scholar 

  24. N S Saini, B Kaur, M Singh and A S Bains, Phys. Plasmas 24, 073701 (2017)

    Article  ADS  Google Scholar 

  25. M Salimullah and M Rosenberg, Phys. Lett. A 254, 347 (1999)

    Article  ADS  Google Scholar 

  26. M A Mahmood, A M Mirza, P H Sakanaka and G Murtaza, Phys. Plasmas 9, 3794 (2002)

    Article  ADS  Google Scholar 

  27. M Singh, N Kaur and N S Saini, Phys. Plasmas 25, 023705 (2018)

    Article  ADS  Google Scholar 

  28. B B Kadomtsev, Plasma turbulence (Academic Press, New York, 1965) p. 82.

  29. P K Shukla, H Ur-Rahman and R P Sharma, J. Plasma Phys. 28, 125 (1982)

    Article  ADS  Google Scholar 

  30. M K Kalita and B C Kalita, J. Plasma Phys. 35, 267 (1986)

    Article  ADS  Google Scholar 

  31. N Kaur and N S Saini, Astrophys. Space Sci. 361, 331 (2016)

    Article  ADS  Google Scholar 

  32. A Hasegawa and C Uberoi, The Alfven wave (Technical Information Center, U.S. Department of Energy, Washington, 1982)

    Google Scholar 

  33. E Thomas, Jr, R L Merlino and M Rosenberg, Plasma Phys. Controlled Fusion 54, 124034 (2012)

    Article  ADS  Google Scholar 

  34. E F El-Shamy, Phys. Rev. E 91, 033105 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

NSS gratefully acknowledges the support for this research work from Department of Science and Technology, Govt. of India, New Delhi under DST-SERB project No. CRG/2019/003988.

Author information

Authors and Affiliations

Authors

Appendix A. Linearisation and derivation of dispersion relation

Appendix A. Linearisation and derivation of dispersion relation

The linearisation of eqs (10)–(17) is performed by assuming the following linearisation scheme: \(n_{i}=n_{i0}+n_{i1}\), \(n_{d}=n_{d0}+n_{d1}\), \(v_{iz}=v_{iz1}\), \(v_{dx}=v_{dx1}\), \(v_{dz}=v_{dz1}\), \(\phi _{\perp }=\phi _{\perp 1}\) and \(\psi _{\parallel }=\psi _{\parallel 1}\). In this linearisation scheme, the quantities with the index ‘0’ represent the unperturbed value of that quantity, while the quantities with the index ‘1’ represent its first-order fluctuation. Thus, after the linearisation of eqs (10)–(14) and assuming all the first-order fluctuations to be of the form \(A=A\mathrm {e}^{i(k_\perp x+k_\parallel z-\omega t)}\), we obtain the following set of equations respectively:

$$\begin{aligned}&\!\!\!\omega n_{i1}= k_\parallel n_{i0}v_{iz1}, \end{aligned}$$
(A.1)
$$\begin{aligned}&\!\!\!\omega v_{iz1}=\frac{Z_i e}{m_i} k_\parallel \psi _{\parallel 1}, \end{aligned}$$
(A.2)
$$\begin{aligned}&\!\!\!\omega n_{d1}=k_\perp n_{d0}v_{dx1}+k_\parallel n_{d0}v_{dz1}, \end{aligned}$$
(A.3)
$$\begin{aligned}&\!\!\!v_{dx1}=\frac{c}{B_0 \Omega _d} \omega k_\perp \phi _{\perp 1} \end{aligned}$$
(A.4)

and

$$\begin{aligned} \omega v_{dz1}=-\frac{Z_d e}{m_d} k_\parallel \psi _{\parallel 1}. \end{aligned}$$
(A.5)

Combining eqs (15) and (16), and linearising it, we obtain

$$\begin{aligned} k_{\perp }^2k_{\parallel }^2(\phi _{\perp 1}-\psi _{\parallel 1})=\frac{4\pi e}{c^2}[Z_i \omega ^2n_{i1}-Z_d \omega k_\parallel n_{d0}v_{dz1}].\nonumber \\ \end{aligned}$$
(A.6)

The linearisation of eq. (17) yields

$$\begin{aligned} Z_dn_{d1}=Z_in_{i1}. \end{aligned}$$
(A.7)

From eqs (A.1) and (A.2), we get

$$\begin{aligned} n_{i1}=\frac{k_{\parallel }^2}{\omega ^2}\frac{Z_i e n_{i0}}{m_i}\psi _{\parallel 1}. \end{aligned}$$
(A.8)

Similarly, from eqs (A.3)–(A.5), we get

$$\begin{aligned} n_{d1}=\frac{n_{d0}c}{B_0\Omega _d}k_{\perp }^2\phi _{\perp 1}-\frac{k_{\parallel }^2}{\omega ^2}\frac{Z_d e n_{d0}}{m_d}\phi _{\parallel 1}. \end{aligned}$$
(A.9)

Now, using eqs (A.8) and (A.9) in eq. (A.7), we get

$$\begin{aligned} \phi _{\perp 1}=\frac{1}{\lambda _{\mathrm{eff}}^2}\frac{V_{Ad}^2k_{\parallel }^2}{k_{\perp }^2\omega ^2}\psi _{\parallel 1}. \end{aligned}$$
(A.10)

Using eqs (A.5), (A.8) and (A.10) in eq. (A.6), we get the required dispersion relation of the dust inertial Alfvén waves

$$\begin{aligned} \omega =\frac{k_{\parallel } V_{Ad}}{\sqrt{1+k_{\perp }^2\lambda _{\mathrm{eff}}^2}}. \end{aligned}$$
(A.11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Singh, K. & Saini, N.S. Large-amplitude dust inertial Alfvén waves in an electron-depleted dusty plasma. Pramana - J Phys 95, 197 (2021). https://doi.org/10.1007/s12043-021-02226-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02226-6

Keywords

PACS Nos

Navigation