Skip to main content
Log in

Dispersion relation of modulational instability for one-dimensional standing solitary waves in hot ultrarelativistic electron–positron plasmas

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, the non-linear dispersion relation of the system for interactions between high intensity laser and hot relativistic electron–positron plasma is derived. We restrict the problem to the standing solitons in ultrarelativistic plasmas and apply the quasineutrality condition. The modulational instability growth rate for different values of plasma temperatures, velocities and wave numbers are illustrated numerically. It is shown that, by increasing the unperturbed plasma enthalpy, the modulational instability growth rate decreases for all the values of plasma fluid velocities. It is also found that the growth rate shows an increasing trend with plasma fluid velocity. Furthermore, the impact of wave amplitude on the modulational instability growth rate is investigated explicitly. The growth rate increases with wave number as well as wave amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N Ratan, N J Sircombe, L Ceurvorst, J Sadler, M F Kasim, J Holloway, M C Levy, R Trines, R Bingham and P A Norreys, Phys. Rev. E 95, 013211 (2017), https://doi.org/10.1103/PhysRevE.95.013211

    Article  ADS  Google Scholar 

  2. E Heidari and M Aslaninejad, Acta. Phys. Pol. A 123, 285 (2013), https://doi.org/10.12693/APhysPolA.123.285

    Article  ADS  Google Scholar 

  3. S Sultana, A Mannan and R Schlickeiser, Eur. Phys. J. D 73, 220 (2019), https://doi.org/10.1140/epjd/e2019-100339-y

    Article  ADS  Google Scholar 

  4. G Sánchez-Arriaga, E Siminos, V Saxena and I Kourakis, Phys. Rev. E 94, 029903 (2016), https://doi.org/10.1103/PhysRevE.94.029903

    Article  ADS  Google Scholar 

  5. V V Kulish et al, Acta Phys. Pol. A 126, 1263 (2014), https://doi.org/10.12693/APhysPolA.126.1263

    Article  ADS  Google Scholar 

  6. G Lehmann and K H Spatschek, Phys. Rev. E 83, 036401 (2011), https://doi.org/10.1103/PhysRevE.83.036401

    Article  ADS  Google Scholar 

  7. E Heidari, M Aslaninejad and H Eshraghi, Plasma Phys. Control. Fusion 52, 075010 (2010), https://doi.org/10.1088/0741-3335/52/7/075010

    Article  ADS  Google Scholar 

  8. D Lu, Z L Li and B S Xie, Phys. Rev. E 88, 033109 (2013), https://doi.org/10.1103/PhysRevE.88.033109

    Article  ADS  Google Scholar 

  9. P K Shukla, M Marklund and B Eliasson, Phys. Lett. A 324, 193 (2004), https://doi.org/10.1016/j.physleta.2004.02.065

    Article  ADS  Google Scholar 

  10. T Tatsuno, M Ohhashi, V I Berezhiani and S V Mikeladze, Phys. Lett. A 363, 225 (2007), https://doi.org/10.1016/j.physleta.2006.10.096

    Article  ADS  Google Scholar 

  11. E Heidari, M Aslaninejad, H Eshraghi and L Rajaee, Phys. Plasmas 21, 032305 (2014), https://doi.org/10.1063/1.4868729

    Article  ADS  Google Scholar 

  12. A Daneshkar, Plasma Phys. Control. Fusion 60, 065010 (2018), https://doi.org/10.1088/1361-6587/aabc40

    Article  ADS  Google Scholar 

  13. M N Shaikh, B Zamir and R Ali, Acta Phys. Pol. A 127, 1625 (2015), https://doi.org/10.12693/APhysPolA.127.1625

    Article  ADS  Google Scholar 

  14. H Ishihara and T Ogawa, Prog. Theor. Exp. Phys. 2019, 021B01 (2019), https://doi.org/10.1093/ptep/ptz005

    Article  Google Scholar 

  15. Y Kominis and K Hizanidis, Int. J. Bifurc. Chaos 16, 1753 (2006), https://doi.org/10.1142/S0218127406015659

    Article  Google Scholar 

  16. M Yoshimura and N Sasao, Prog. Theor. Exp. Phys. 2014, 073B02 (2014), https://doi.org/10.1093/ptep/ptu094

    Article  Google Scholar 

  17. J R Angus and S I Krasheninnikov, Phys. Plasmas 19, 052504 (2012), https://doi.org/10.1063/1.4714614

    Article  ADS  Google Scholar 

  18. G Brodin, M Marklund, L Stenflo and P K Shukla, New J. Phys. 8, 16 (2006), https://doi.org/10.1088/1367-2630/8/1/016

    Article  ADS  Google Scholar 

  19. N Hongsit, M A Allen and G Rowlands, Phys. Lett. A 372, 2420 (2008), https://doi.org/10.1016/j.physleta.2007.12.005

    Article  ADS  Google Scholar 

  20. J J Seough and P H Yoon, Phys. Plasmas 16, 092103 (2009), https://doi.org/10.1063/1.3216459

    Article  ADS  Google Scholar 

  21. E Heidari, L Rajaee and M Aslaninejad, Plasma Phys. Control. Fusion 61, 065020 (2019), https://doi.org/10.1088/1361-6587/ab0e67

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges that this research has been financially supported by the office of vice chancellor for research of Islamic Azad University, Bushehr Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Heidari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, E. Dispersion relation of modulational instability for one-dimensional standing solitary waves in hot ultrarelativistic electron–positron plasmas. Pramana - J Phys 95, 24 (2021). https://doi.org/10.1007/s12043-020-02069-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02069-7

Keywords

PACS

Navigation