Skip to main content
Log in

Dust Ion Acoustic Solitary Waves in Plasma with Cairns Distributed Electrons and New Classical Distribution of Ions

  • Published:
Astrophysics Aims and scope

In this composition of plasma with negative dust charge, new classical distribution of nonthermal ions and Cairns distributed electrons, both supersonic and subsonic only rarefactive solitons are found to exist. It appears to conclude that the solitons cease to exist at the increase of c. The supersonic (M = 1.4) rarefactive solitons considerably and concavely increase from small amplitude with the increase of the ion to dust density ratio Q for various values of temperature α . The concave but increasing growth of amplitude of the rarefactive solitons for all M (>1) exhibits its distinct character. Smaller the Mach number (e.g., for M = 1.2), smaller is the amplitude of the solitons throughout the range of v0 (ion drift). The amplitudes of the rarefactive supersonic solitons are found to increase at the increase of the nonthermal parameter β for all r ( =ne0 /ni0 ). The dynamical scenario of this model indicates that the mass of the dusts should decrease in the plasma to generate higher amplitude solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Barkain, N. D'Angelo, R. L. Merlino, Planet Space Sci., 44, 239, 1996.

    Article  ADS  Google Scholar 

  2. A. Barkain, R. L. Merlino, N. D'Angelo, Phys. Plasmas, 2, 3563, 1995.

    Article  ADS  Google Scholar 

  3. Y. Nakamura, H. Bailung, P. K. Shukla, Phys. Rev. Lett., 83, 1602, 1999.

    Article  ADS  Google Scholar 

  4. V. W. Chow, D. A. Mendis, M. J. Rosenberg, J. Geophys. Res., 98, 19065, 1993.

    Article  ADS  Google Scholar 

  5. N. N. Rao, P. K. Shukla, M. Y. Yu, Planet Space Sci., 38, 543, 1990.

    Article  ADS  Google Scholar 

  6. P. V. Bliokh, V. V. Yaroshenko, Sov. Astron., 29, 330, 1985.

    ADS  Google Scholar 

  7. F. Verheest, Planet Space Sci., 40, 1, 1992.

    Article  ADS  Google Scholar 

  8. P. K. Shukla, A. A. Mamun, Introduction to Dusty Plasma Phys. IOP, London 2002.

    Book  Google Scholar 

  9. W. S. Duan, X. R. Hong, Y. R. Shi et al., Chaos Soliton Fract., 16, 767, 2003.

    Article  ADS  Google Scholar 

  10. Y. Y. Wang, J. F. Jhang, Phys. Lett. A, 352, 155, 2006.

    Article  ADS  Google Scholar 

  11. A. A. Mamun, R. A. Cairns, N. D'Angelo, Phys. Plasmas, 3(7), 2610, 1996.

    Article  ADS  Google Scholar 

  12. R. A. Cairns, A. A. Mamun, R. Bingham et al., Geophys. Res. Lett., 22, 2709, 1995.

    Article  ADS  Google Scholar 

  13. F. Verheest, S. R. Pillay, Phys. Plasmas, 15, 013703, 2008.

    Article  ADS  Google Scholar 

  14. H. R. Pakzad, Astrophys. Space Sci., 324, 41, 2009.

    Article  ADS  Google Scholar 

  15. M. M. Masud, M. Asaduzzaman, A. A. Mamun, Phys. Plasmas, 19, 103706, 2012.

    Article  ADS  Google Scholar 

  16. M. M. Masud, A. A. Mamun, JETP Lett., 96, 765, 2013.

    Article  ADS  Google Scholar 

  17. M. M. Masud, M. Asaduzzaman, A. A. Mamun, Astron. Space Sci., 343, 221, 2013.

    Article  ADS  Google Scholar 

  18. M. Ferdousi, A. A. Mamun, Braz. J. Phys., 45, 89, 2015.

    Article  ADS  Google Scholar 

  19. N. R. Kundu, M. M. Masud, K. S. Ashraf et al., Astrophys. Space Sci., 343, 279, 2013.

    Article  ADS  Google Scholar 

  20. S. Ghosh, S. Sarkar, H. Khan et al., Phys. Lett., A274, 162, 2000.

    Article  ADS  Google Scholar 

  21. Y. Nakamura, A. Sarma, Phys. Plasmas, 8, 3921, 2001.

    Article  ADS  Google Scholar 

  22. M. Shahmansouri, M. Tribeche, Commun. Theor. Phys., 61, 377, 2014.

    Article  Google Scholar 

  23. B. C. Kalita, Phys. Plasmas, 24, 032116, 2017.

    Article  ADS  Google Scholar 

  24. W. F. El-Taibany, S. K. El-Labany, E. E. Behery et al., Eur. Phys. J. Plus, 134(9), 457, 2019.

    Article  Google Scholar 

  25. A. Saha, P. Chatterjee, C. S. Wong, Braz. J. Phys., 45, 656, 2015.

    Article  ADS  Google Scholar 

  26. W. E. El-Taibany, S. K. El-Labany, A. S. El-Helbawy et al., Eur. Phys. J. Plus., 137, 261, 2022.

    Article  Google Scholar 

  27. A. Mamun, Phys. Rev. E, 77, 026406, 2008.

    Article  ADS  Google Scholar 

  28. D. A. Mendis, M. Rosenberg, Ann. Rev. Astron. Astrophys., 32, 419, 1994.

    Article  ADS  Google Scholar 

  29. M. Khalid, E. A. Elghmaz, L. Shamsad, Braz. J. Phys., 53, 2, 2023.

    Article  ADS  Google Scholar 

  30. M. A. H. Khaled, M. A. Shukri, Y. A. A. Hager, Chinese Phys. B, 31, 010505, 2022.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kalita.

Additional information

Published in Astrofizika, Vol. 67, No. 1, pp. 91-103 (February 2023)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, B.C., Kalita, R. & Das, S. Dust Ion Acoustic Solitary Waves in Plasma with Cairns Distributed Electrons and New Classical Distribution of Ions. Astrophysics 67, 80–92 (2024). https://doi.org/10.1007/s10511-024-09819-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-024-09819-0

Keywords

Navigation