Skip to main content
Log in

Beyond the conventional collisional absorption of laser light in under-dense plasma: A particle-in-cell simulation study

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Collisional absorption of laser light in an under-dense plasma is studied by particle-in-cell (PIC) simulation with Monte Carlo binary Coulomb collisions between charge particles. For a given plasma thickness of a few times the wavelength of 800 nm laser, fractional absorption (\(\alpha \)) of the laser light due to Coulomb collisions (mainly between electrons and ions) is calculated at different electron temperature \(T_\mathrm {e}\) with a total velocity \(v = ({ v}_\mathrm {th}^2 + { v}_0^2/2)^{1/2}\) dependent Coulomb logarithm \(\ln \Lambda (v)\), where \({ v}_\mathrm {th}\) and \({ v}_0\) are thermal and ponderomotive velocity of an electron. In the low-temperature regime (\(T_\mathrm {e}\lesssim 15\) eV), it is found that \(\alpha \) increases with increasing laser intensity \(I_0\) up to a maximum corresponding to an intensity \(I_c\), and then it drops (approximately) obeying the conventional scaling of \(\alpha \propto I_0^{-3/2}\) when \(I_0>I_c\). Such a non-conventional increase of \(\alpha \) with \(I_0\) in the low-intensity regime was demonstrated earlier in experiments, and recently explained by classical and quantum models [Phys. Plasmas 21, 13302 (2014); Phys. Rev. E 91, 043102 (2015)]. Here, for the first time, we report this non-conventional collisional laser absorption by PIC simulation, thus bridging the gap between models, simulations, and experimental findings. Moreover, electron energy distributions naturally emanating during the laser interaction (in PIC simulations) are found to be anisotropic and non-Maxwellian in nature, leading to some deviations from the earlier analytical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D R Bach, D E Casperson, D W Forslund, S J Gitomer, P D Goldstone, A Hauer, J F Kephart, J M Kindel, R Kristal, G A Kyrala, K B Mitchell, D B van Hulsteyn and A H Williams, Phys. Rev. Lett50, 2082 (1983)

    Article  ADS  Google Scholar 

  2. U Teubner, J Bergmann, B van Wonterghem, F P Schäfer and R Sauerbrey, Phys. Rev. Lett70, 794 (1993)

    Article  ADS  Google Scholar 

  3. D F Price, R M More, R S Walling, G Guethlein, R L Shepherd, R E Stewart and W E White, Phys. Rev. Lett75, 252 (1995)

    Article  ADS  Google Scholar 

  4. M Cerchez, R Jung, J Osterholz, T Toncian, O Willi, P Mulser and H Ruhl, Phys. Rev. Lett100, 245001 (2008)

    Article  ADS  Google Scholar 

  5. W Rozmus and V T Tikhonchuk, Phys. Rev. A 46, 7810 (1992)

    Article  ADS  Google Scholar 

  6. Q L Dong, J Zhang and H Teng, Phys. Rev. E 64, 026411 (2001)

    Article  ADS  Google Scholar 

  7. W L Kruer, The physics of laser plasma interactions (Addison-Wesley, New York, 1988)

    Google Scholar 

  8. S Eliezer, The interaction of high-power lasers with plasmas (IOP Publishing, Bristol, 2002)

    Book  Google Scholar 

  9. Peter Mulser and Dieter Bauer, High power laser–matter interaction, STMP 238 (Springer, Berlin, 2010)

    Book  Google Scholar 

  10. K R Manes, V C Rupert, J M Auerbach, P Lee and J E Swain, Phys. Rev. Lett. 39, 281 (1977)

    Article  ADS  Google Scholar 

  11. P Mulser, D Bauer and H Ruhl, Phys. Rev. Lett. 101, 225002 (2008)

    Article  ADS  Google Scholar 

  12. P Mulser and M Kanapathipillai, Phys. Rev. A 71, 063201 (2005)

    Article  ADS  Google Scholar 

  13. P Mulser, M Kanapathipillai and D H H Hoffman, Phys. Rev. Lett. 95, 103401 (2005)

    Article  ADS  Google Scholar 

  14. M Kundu and D Bauer, Phys. Rev. Lett. 96, 123401 (2006)

    Article  ADS  Google Scholar 

  15. M Kundu and D Bauer, Phys. Rev. A 74, 063202 (2006)

    Article  ADS  Google Scholar 

  16. M Kundu, P K Kaw and D Bauer, Phys. Rev. A 85, 23202 (2012)

    Article  ADS  Google Scholar 

  17. I Kostyukov and J M Rax, Phys. Rev. E 67, 066405 (2003)

    Article  ADS  Google Scholar 

  18. F Brunel, Phys. Rev. Lett. 59, 52 (1987)

    Article  ADS  Google Scholar 

  19. H Cai, W Yu, S Zhu and C Zheng, Phys. Plasmas 13, 113105 (2006)

    Article  ADS  Google Scholar 

  20. Th Bornath, D Kremp, P Hilse and M Schlanges, J. Phys. Conf. Ser. 11, 180 (2005)

    Google Scholar 

  21. Th Bornath, M Schlanges, P Hilse and D Kremp, Phys. Rev. E 64, 26414 (2001)

    Article  Google Scholar 

  22. D Riley, L A Gizzi, A J Mackinnon, S M Viana and O Willi, Phys. Rev. E 48, 4855 (1993)

    Article  ADS  Google Scholar 

  23. L Schlessinger and J Wright, Phys. Rev. A 20, 1934 (1979)

    Article  ADS  Google Scholar 

  24. P Hilse, M Schlanges, Th Bornath and D Kremp, Phys. Rev. E 71, 056408 (2005)

    Article  ADS  Google Scholar 

  25. J T Mendonça, R M O Galvão, A Serbeto, S-L Liang and L K Ang, Phys. Rev. E 87, 063112 (2013)

    Article  ADS  Google Scholar 

  26. M Moll, M Schlanges, Th Bornath and V P Krainov, New J. Phys. 14, 065010 (2012)

    Article  ADS  Google Scholar 

  27. G J Pert, J. Phys. A 5, 506 (1972)

    Article  ADS  Google Scholar 

  28. G J Pert, J. Phys. B 8, 3069 (1975)

    Article  ADS  Google Scholar 

  29. S Rand, Phys. Rev. 136, B231 (1964)

    Article  ADS  Google Scholar 

  30. S-M Weng, Z-M Sheng and J Zhang, Phys. Rev. E 80, 56406 (2009)

    Article  ADS  Google Scholar 

  31. V P Silin, Sov. Phys. JETP 20, 1510 (1965)

    Google Scholar 

  32. P Mulser and A Saemann, Contrib. Plasma Phys. 37, 211 (1997)

    Article  ADS  Google Scholar 

  33. P Mulser and R Schneider, J. Phys. A: Math. Theor. 42, 214058 (2009)

    Article  ADS  Google Scholar 

  34. P Mulser, F Cornolti, E Bésuelle and R Schneider, Phys. Rev. E 63, 16406 (2000)

    Article  Google Scholar 

  35. H-J Kull and L Plagne, Phys. Plasmas 8, 5244 (2001)

    Article  ADS  Google Scholar 

  36. J Wesson, Tokamaks (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  37. G J Pert, Phys. Rev. E 51, 4778 (1995)

    Article  ADS  Google Scholar 

  38. S C Rae and K Burnett, Phys. Rev. A 46, 2077 (1992)

    Article  ADS  Google Scholar 

  39. P J Catto and Th Speziale, Phys. Fluids 20, 167 (1977)

    Article  ADS  Google Scholar 

  40. D Kremp, Th Bornath, P Hilse, H Haberland, M Schlanges and M Bonitz, Contrib. Plasma Phys. 41, 259 (2001)

    Article  ADS  Google Scholar 

  41. A Brantov, W Rozmus, R Sydora, C E Capjack, V Y Bychenkov and V T Tikhonchuk, Phys. Plasmas 10, 3385 (2003)

    Article  ADS  Google Scholar 

  42. S Skupsky, Phys. Rev. A 36, 5701 (1987)

    Article  ADS  Google Scholar 

  43. M Kundu, Phys. Plasmas 21, 13302 (2014)

    Article  ADS  Google Scholar 

  44. M Kundu, Phys. Rev. E 91, 043102 (2015)

    Article  ADS  Google Scholar 

  45. C K Birdsall and A B Langdon, Plasma physics via computer simulation (McGraw Hill, New York, 1981)

    Google Scholar 

  46. R W Hockney and J W Eastwood, Computer simulation using particles (IOP Publishing, Adam Hilger, New York, 1988)

    Book  Google Scholar 

  47. Y Sentoku, K Mima, Y Kishimoto and M Honda, J. Phys. Soc. Jpn 67, 4084 (1998) Y Sentoku and A J Kemp, J. Comput. Phys. 227, 6846 (2008)

  48. T Takizuka and H Abe, J. Comput. Phys. 25, 205 (1977)

    Article  ADS  Google Scholar 

  49. T Takizuka, Plasma Phys. Control. Fusion 59, 034008 (2017) T Takizuka, K Shimizu, N Hayashi, M Hosokawa and M Yagi, Nucl. Fusion 49, 075038 (2009) T Takizuka, Plasma Sci. Technol. 13, 316 (2011)

  50. S Ma, R D Sydora and J M Dawson, Comput. Phys. Commun77, 190 (1993)

    Article  ADS  Google Scholar 

  51. R Lichters, R E W Pfund and J Meyer-ter-vehn, A parallel one dimensional relativistic electromagnetic particle-in-cell code for simulating laser plasma interaction (Max Planck Institute, Garching, Germany), http://www.lichters.net/work.html

  52. H Ruhl, Classical particle simulations, in: Introduction to computational methods in many body physics edited by M Bonitz, D Semkat (Rinton Press, 2006) K Germaschewski, W Fox, N Ahmadi, L Wang, S Abbott, H Ruhl and A Bhattacharjee, The plasma simulation code: A modern particle-in-cell code with load-balancing and GPU support, http://arxiv.org/abs/1310.7866v1

  53. T Umeda, Y Omura, T Tominaga and H Matsumoto, Comput. Phys. Commun. 156, 73 (2003)

    Article  ADS  Google Scholar 

  54. D M Sullivan, Electromagnetic simulation using the FDTD method, 2nd edn (Wiley-IEEE Press, London, 2013)

    Book  Google Scholar 

  55. G J Pert, J. Phys. B 38, 27 (1999)

    Article  ADS  Google Scholar 

  56. B I Cohen, A M Dimits and D J Strozzi, J. Comput. Phys. 234, 33 (2013)

    Article  ADS  Google Scholar 

  57. A Djaoui and A A Offenberger, Phys. Rev. E 50, 4961 (1994)

    Article  ADS  Google Scholar 

  58. C D Decker, W B Mori, J M Dawson and T Katsouleas, Phys. Plasmas 1, 4043 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Anshuman Borthakur for the initial help in the Monte–Carlo simulations and Sudip Sengupta for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Kundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, M. Beyond the conventional collisional absorption of laser light in under-dense plasma: A particle-in-cell simulation study. Pramana - J Phys 92, 50 (2019). https://doi.org/10.1007/s12043-018-1716-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1716-9

Keywords

PACS No

Navigation