Skip to main content

Advertisement

Log in

Laser-driven particle acceleration at near critical density plasmas

  • Regular Article - Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Recent developments of high-power laser systems have enabled the production of high energy proton and electron beams. Here, we studied the laser-driven particle acceleration at near-critical density plasma by employing a 100 TW ultra-fast intense laser pulse through two-dimensional (2D) particle-in-cell (PIC) simulations. The strong magnetic field production and the energy of accelerated particles is numerically demonstrated and shows that there is a dependence on laser focusing position and electron number density. 2D PIC simulation results show that by using 100 TW table-top laser systems, it is possible to produce 120 MeV protons and 250 MeV electrons with a small angular distribution.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data is included in the manuscript].

References

  1. S. Gales, K.A. Tanaka, D.L. Balabanski, F. Negoita, D. Stutman, O. Tesileanu, C.A. Ur, D. Ursescu, I. Andrei, S. Ataman, M.O. Cernaianu, L. DAlessi, I. Dancus, B. Diaconescu, N. Djourelov, D. Filipescu, D.G. Ghita et al., Rep. Prog. Phys. 18, 094301 (2018)

    Article  ADS  Google Scholar 

  2. C.N. Danson, C. Haefner, J. Bromage et al., High Power Laser Sci. Eng. 7, e54 (2019)

    Article  Google Scholar 

  3. http://www.eli-laser.eu (December 2020)

  4. G. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  5. H. Daido, M. Nishiuchi, A. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012)

    Article  ADS  Google Scholar 

  6. A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751–793 (2013)

    Article  ADS  Google Scholar 

  7. S.V. Bulanov, J.J. Wilkens, T.Z. Esirkepov et al., Physics Uspekhi 57, 1149–1179 (2014)

    Article  ADS  Google Scholar 

  8. T. Nakamura, J. Koga, T.Z. Esirkepov et al., Phys. Rev. Lett. 108, 195001 (2012)

    Article  ADS  Google Scholar 

  9. J. Dechard, X. Davoine, L. Berge, Phys. Rev. Lett. 123, 264801 (2019)

    Article  ADS  Google Scholar 

  10. J. Dechard, X. Davoine, L. Gremillet, L. Berge, Phys. Plasmas 27, 093105 (2020)

    Article  ADS  Google Scholar 

  11. R. Snavely, M. Key, S. Hatchett, T. Cowan, M. Roth, T. Phillips, M. Stoyer, E. Henry, T. Sangster, M. Singh, S. Wilks, A. MacKinnon, A. Offenberger, D. Pennington, K. Yasuike, A. Langdon, B. Lasinski, J. Johnson, M. Perry, E. Campbell, Phys. Rev. Lett. 85, 2945–2948 (2000)

    Article  ADS  Google Scholar 

  12. F. Wagner, O. Deppert, C. Brabetz, P. Fiala, A. KleinSchmidt, P. Poth, V.A. Schanz, A. Tebartz, B. Zielbauer, M. Roth et al., Phys. Rev. Lett. 116, 205002 (2016)

    Article  ADS  Google Scholar 

  13. A. Higginson, R. Gray, M. King, R. Dance, S. Williamson, N. Butler, R. Wilson, R. Capdessus, C. Armstrong, J. Green, S. Hawkes, P. Martin, W. Wei, S. Mirfayzi, X. Yuan, S. Kar, M. Borghesi, R. Clarke, D. Neely, P. McKenna, Nature Commun. 9, 724 (2018)

    Article  ADS  Google Scholar 

  14. A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, V. Bychenkov, Phys. Rev. Lett. 84, 4108–4111 (2000)

    Article  ADS  Google Scholar 

  15. S. Wilks, A. Langdon, T. Cowan et al., Phys. Plasmas 8, 542 (2001)

    Article  ADS  Google Scholar 

  16. B. Qiao, M. Zepf, M. Borghesi, M. Geissler, Phys. Rev. Lett. 102, 145002 (2009)

    Article  ADS  Google Scholar 

  17. B. Qiao, M. Zepf, M. Borghesi, B. Dromey, M. Geissler, A.K.P. Gibbon, Phys. Rev. Lett. 105, 155002 (2010)

    Article  ADS  Google Scholar 

  18. T. Esirkepov, M. Borghesi, S. Bulanov et al., Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003 (2004)

    Article  ADS  Google Scholar 

  19. A.P.L. Robinson, M. Zepf, S. Kar et al., Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10, 01302 (2008)

    Article  Google Scholar 

  20. X. Zhang, B. Shen, L. Ji et al., Phys. Plasmas 17, 123102 (2010)

    Article  ADS  Google Scholar 

  21. D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R.A. Fonseca, W.B.M.L.O. Silva, C. Joshi, Nat. Phys. 8, 95 (2012)

    Article  Google Scholar 

  22. A. Sahai, F.S. Tsung, A.R. Tableman et al., Phys. Rev. E 88, 043105 (2013)

    Article  ADS  Google Scholar 

  23. H.W. Powell, M. King, R.J. Gray et al., New J. Phys. 17, 103033 (2015)

    Article  ADS  Google Scholar 

  24. A.V. Kuznetsov, T.Z. Esirkepov, F.F. Kamenets, S.V. Bulanov, Plasma Phys. Rep. 27, 211–220 (2001)

    Article  ADS  Google Scholar 

  25. S. Bulanov, T.Z. Esirkepov, Phys. Rev. Lett. 98, 049503 (2007)

    Article  ADS  Google Scholar 

  26. T. Nakamura, S.V. Bulanov, T.Z. Esirkepov, M. Kando, Phys. Rev. Lett. 105, 135002 (2010)

    Article  ADS  Google Scholar 

  27. S.S. Bulanov, V.Y. Bychenkov, V. Chvykov, G. Kalinchenko, D.W. Litzenberg, T. Matsuoka, A.G.R. Thomas, L. Willingale, V. Yanovsky, K. Krushelnick, A. Maksimchuk, Phys. Plasmas 17, 043105 (2010)

    Article  ADS  Google Scholar 

  28. J. Park, S.S. Bulanov, J. Bin, Q. Ji, S. Steinke, J. Vay, C.G.R. Geddes, C.B. Schroeder, W.P. Leemans, T. Schenkel, E. Esarey, Phys. Plasmas 26, 103108 (2019)

    Article  ADS  Google Scholar 

  29. S.S. Bulanov, E. Esarey, C.B. Schroeder, S.V. Bulanov, T.Z. Esirkepov, M. Kando, F. Pegoraro, W.P. Leemans, Phys. Plasmas 23, 056703 (2016)

    Article  ADS  Google Scholar 

  30. D. Sangwan, O. Culfa, C. Ridgers, S. Aogaki, D. Stutman, B. Diaconescu, Laser Particle Beams 37, 346–353 (2019)

    Article  Google Scholar 

  31. C.S. Brady, C.P. Ridgers, T.D. Arber et al., Phys. Rev. Lett. 109, 245006 (2012)

    Article  ADS  Google Scholar 

  32. C. Ridgers, J. Kirk, R. Duclous et al., J. Comput. Phys. 260, 273–285 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. D.D. Sorbo, D.R. Blackman, R. Capdessus et al., New J. Phys. 20, 033014 (2018)

    Article  Google Scholar 

  34. J.H. Bin, W.J. Ma, H.Y. Wang, M.J.V. Streeter, C. Kreuzer, D. Kiefer, M. Yeung, S. Cousens, P.S. Foster, B. Dromey, X.Q. Yan, R. Ramis, J.M. ter Vehn, M. Zepf, J. Schreiber, Phys. Rev. Lett. 115, 064801 (2015)

    Article  ADS  Google Scholar 

  35. L. Willingale, S.P.D. Mangles, P.M. Nilson, R.J. Clarke, A.E. Dangor, M.C. Kaluza, S. Karsch, K.L. Lancaster, W.B. Mori, Z. Najmudin, J. Schreiber, A.G.R. Thomas, M.S. Wei, K. Krushelnick, Phys. Rev. Lett. 96, 245002 (2006)

    Article  ADS  Google Scholar 

  36. L. Willingale, P.M. Nilson, A.G.R. Thomas, S.S. Bulanov, A.M.W. Nazarov, T.C. Sangster, C. Stoeck, K. Krushelnick, Phys. Plasmas 18, 056706 (2011)

    Article  ADS  Google Scholar 

  37. S.S. Bulanov, E. Esarey, C.B. Schroeder, W.P. Leemans, S.V. Bulanov, D. Margarone, G. Korn, T. Haberer, Phys. Rev. Spec. Top.-Accel. Beams 18, 061302 (2015)

    Article  Google Scholar 

  38. G.-Z. Sun, E. Ott, Y.C. Lee, P. Guzdar, Phys. Fluids 30, 526 (1987)

    Article  ADS  Google Scholar 

  39. R.W. Hellwarth, Phys. Rev. 130, 1850 (1963)

    Article  ADS  Google Scholar 

  40. D. Turnbull, S. Bucht, A. Davies, D. Haberberger, T. Kessler, J. Shaw, D. Froula, Phys. Rev. Lett. 120, 024801 (2018)

    Article  ADS  Google Scholar 

  41. A.B. Langdon, B.F. Lasinski, W.L. Kruer, Phys. Rev. Lett. 43, 133 (1979)

    Article  ADS  Google Scholar 

  42. P.K. Singh, A. Adak, A.D. Lad, G. Chatterjee, G.R. Kumar, Phys. Plasmas 27, 083105 (2020)

  43. I. Tsymbalov, D. Gorlova, A. Savel’ev, Phys. Rev. E. 102, 063206 (2020)

    Article  ADS  Google Scholar 

  44. M.H. Helle, D.F. Gordon, D. Kaganovich, Y. Chen, J.P. Palastro, A. Ting, Phys. Rev. Lett. 117, 165001 (2016)

    Article  ADS  Google Scholar 

  45. A. Sharma, A. Andreev, Laser Part. Beams. 34, 219 (2016)

  46. A. Sharma, Sci. Rep. 8, 2191 (2018)

    Article  ADS  Google Scholar 

  47. F. Salehi, A.J. Goers, G.A. Hine, L. Feder, D. Kuk, B. Miao, D. Woodbury, K.Y. Kim, H.M. Milchberg, Opt. Lett. 42, 215–218 (2017)

    Article  ADS  Google Scholar 

  48. S. Shiraishi, C. Benedetti, A.J. Gonsalves, K. Nakamura, B.H. Shaw, T. Sokollik, J. van Tilborg, C.G.R. Geddes, C.B. Schroeder, C. Toth, E. Esarey, W.P. Leemans, Phys. Plasmas 20, 063103 (2013)

    Article  ADS  Google Scholar 

  49. A.S. Pirozhkov, M. Kando, T.Z. Esirkepov, P. Gallegos, H. Ahmed, E.N. Ragozin, A.Y. Faenov, T.A. Pikuz, T. Kawachi, A. Sagisaka, J.K. Koga, M. Coury, J. Green et al., Phys. Rev. Lett. 108, 135004 (2012)

    Article  ADS  Google Scholar 

  50. J.T. Mendonca, J. Vieira, Phys. Plasmas 22, 123106 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We also would like to thank Sarah North for proofreading. This work was in part funded by the UK EPSRC Grants EP/G054950/1, EP/G056803/1, EP/G055165/1 EP/M018156/1 and EP/ M022463/1.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Ozgur Culfa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Culfa, O. Laser-driven particle acceleration at near critical density plasmas. Eur. Phys. J. D 75, 194 (2021). https://doi.org/10.1140/epjd/s10053-021-00208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00208-2

Navigation