Skip to main content
Log in

A dynamical study of certain nonlinear diffusion–reaction equations with a nonlinear convective flux term

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We explore the dynamics of quadratic and quartic nonlinear diffusion–reaction equations with nonlinear convective flux term, which arise in well-known physical and biological problems such as population dynamics of the species. Three integration techniques, namely the \(({G^\prime }/{G})\)-expansion method, its generalised version and Kudryashov method, are adopted to solve these equations. We attain new travelling and solitary wave solutions in the form of Jacobi elliptic functions, hyperbolic functions, trigonometric functions and rational solutions with some constraint relations that naturally appear from the structure of these solutions. The travelling population fronts, which are the general solutions of nonlinear diffusion–reaction equations, describe the species invasion if higher population density corresponds to the species invasion. This effort highlights the significant features of the employed algebraic approaches and shows the diversity in the constructed solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J D Murray, Mathematical biology: An introduction (Springer-Verlag, New York, 1993)

    Google Scholar 

  2. P G Drazin and R S Johnson, Solitons: An introduction (Cambridge University Press, Cambridge, 1989)

    Book  Google Scholar 

  3. R Hirota, Direct method of finding exact solutions of nonlinear evoluton equations (Springer, Berlin, 1976)

    MATH  Google Scholar 

  4. F Cariello and M Tabor, Physica D 39, 77 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  5. W Hereman and M Takaoka, J. Phys. A 23, 4805 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  6. E V Krishnan, S Kumar and A Biswas, Nonlinear Dyn. 70, 1213 (2012)

    Article  Google Scholar 

  7. A L Fabian, R Kohl and A Biswas, Commun. Nonlinear Sci. Numer. Simul. 14, 1227 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. H Triki, S Crutcher, A Yildirim, T Hayat, O M Aldossary and A Biswas, Rom. Rep. Phys. 64, 367 (2012)

    Google Scholar 

  9. H Kumar and F Chand, J. Nonlinear Opt. Phys. Mater. 22, 1350001 (2013)

    Article  ADS  Google Scholar 

  10. H Kumar and F Chand, Opt. Laser Technol. 54, 265 (2013)

    Article  ADS  Google Scholar 

  11. H Kumar, A Malik, M S Gautam and F Chand, Acta Phys. Pol. A 131, 275 (2017)

    Article  Google Scholar 

  12. M Wang, Phys. Lett. A 199, 169 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  13. H Kumar, A Malik and F Chand, J. Math. Phys. 53, 103704 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  14. A M Wazwaz, Appl. Math. Comput. 154, 713 (2004)

    MathSciNet  Google Scholar 

  15. E Fan and H Zhang, Phys. Lett. A 246, 403 (1998)

    Article  ADS  Google Scholar 

  16. E Fan, Phys Lett. A 277, 212 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. Q Zhou, Q Zhu, Y Liu, H Yu, P Yao and A Biswas, Laser Phys. 25, 015402 (2015)

    Article  ADS  Google Scholar 

  18. M Ekici, A Sonmezoglu, Q Zhou, S P Moshokoa, M Z Ullah, A H Arnous, A Biswas and M Belic, Opt. Quant. Electr. 50, 75 (2018)

    Article  Google Scholar 

  19. A Biswas, M Ekici, A Sonmezoglu, H Triki, Q Zhou, S P Moshokoa and M Belic, Optik 158, 790 (2018)

    Article  ADS  Google Scholar 

  20. A R Seadawy and K El-Rashidy, Pramana – J. Phys. 87: 20 (2016)

    Article  ADS  Google Scholar 

  21. M A Khater, A R Seadawy and D Lu, Pramana – J. Phys. 90: 59 (2018)

    Article  ADS  Google Scholar 

  22. A H Khater, D K Callebaut, W Malfliet and A R Seadawy, Phys. Scr. 64, 533 (2001)

    Article  ADS  Google Scholar 

  23. A H Khater, D K Callebaut and A R Seadawy, Phys. Scr. 67, 340 (2003)

    Article  ADS  Google Scholar 

  24. A H Khater, D K Callebaut, M A Helal and A R Seadawy, Phys. Scr. 74, 384 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. A H Khater, D K Callebaut, M A Helal and A R Seadawy, Eur. Phys. J. D 39, 237 (2006)

    Article  ADS  Google Scholar 

  26. M A Helal and A R Seadawy, Z. Angew. Math. Phys. 62, 839 (2011)

    Article  MathSciNet  Google Scholar 

  27. M A Helal and A R Seadawy, Comput. Math. Appl. 62, 3741 (2011)

    Article  MathSciNet  Google Scholar 

  28. A H Khater, M A Helal and A R Seadawy, Il Nuovo Cimento B 115, 1303 (2000)

    ADS  Google Scholar 

  29. A R Seadawy, Appl. Math. Lett. 25, 687 (2012)

    Article  MathSciNet  Google Scholar 

  30. A R Seadawy, Appl. Math. Sci. 6, 4081 (2012)

    MathSciNet  Google Scholar 

  31. A M Wazwaz, Math. Comput. Modell. 40, 499 (2004)

    Article  Google Scholar 

  32. E Fan and Y C Hon, Appl. Math. Comput. 141, 351 (2003)

    MathSciNet  Google Scholar 

  33. Z Fu and Q Zhao, Phys. Lett. A 289, 69 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  34. J H He and M A Abdou, Chaos Solitons Fractals 34, 1421 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  35. H Kumar, A Malik, F Chand and S C Mishra, Indian J. Phys. 86, 819 (2012)

    Article  ADS  Google Scholar 

  36. H Kumar and F Chand, AIP Adv. 3, 032128 (2013)

    Article  ADS  Google Scholar 

  37. H Kumar and F Chand, J. Theor. Appl. Phys. 8, 114 (2014)

    Article  ADS  Google Scholar 

  38. H Kumar and F Chand, Optik 125, 2938 (2014)

    Article  ADS  Google Scholar 

  39. A R Seadaway, Pramana – J. Phys. 89: 49 (2017)

    Article  ADS  Google Scholar 

  40. H Kumar, A Malik and F Chand, Pramana – J. Phys. 80, 361 (2013)

    Article  ADS  Google Scholar 

  41. H Kumar and P Saravanan, Sci. Iran. B 24(5), 2429 (2017)

    Google Scholar 

  42. M Wang, X Li and J Zhang, Phys. Lett. A 372, 417 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  43. J Zhang, X Wei and Y Lu, Phys. Lett. A 372, 3653 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  44. S Zhang, L Tong and W Wang, Phys. Lett. A 372, 2254 (2008)

    Article  ADS  Google Scholar 

  45. E M E Zayed and K A Gepreel, J. Math. Phys. 50, 013502 (2008)

    Article  ADS  Google Scholar 

  46. D D Ganji and M Abdollahzadeh, J. Math. Phys. 50, 013519 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  47. T Ozis and I Aslan, Commun. Theor. Phys. 51, 577 (2009)

    Article  Google Scholar 

  48. E M E Zayed and K A Gepreel, Int. J. Nonlinear Sci. 7, 501 (2009)

    MathSciNet  Google Scholar 

  49. A Malik, F Chand and S C Mishra, Appl. Math. Comput. 216, 2596 (2010)

    MathSciNet  Google Scholar 

  50. M Mirzazadeh, M Eslami, D Milovic and A Biswas, Optik 125, 5480 (2014)

    Article  ADS  Google Scholar 

  51. A Malik, F Chand, H Kumar and S C Mishra, Pramana – J. Phys. 78, 513 (2012)

    Article  ADS  Google Scholar 

  52. F Chand and A Malik, Int. J. Nonlinear Sci. 14, 416 (2012)

    MathSciNet  Google Scholar 

  53. E M E Zayed, J. Phys. A 42, 195202 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  54. A Malik, F Chand, H Kumar and S C Mishra, Comput. Math. Appl. 64, 2850 (2012)

    Article  MathSciNet  Google Scholar 

  55. S Guo and Y Zhou, Appl. Math. Comput. 215, 3214 (2010)

    MathSciNet  Google Scholar 

  56. N A Kudryashov, Commun. Nonlinear Sci. Numer. Simul. 17, 2248 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  57. H Triki, H Leblond and D Mihalache, Nonlinear Dyn. 86, 2115 (2016)

    Article  Google Scholar 

  58. S B Bhardwaj, R M Singh, K Sharma and S C Mishra, Pramana – J. Phys. 86, 1253 (2016)

    Article  ADS  Google Scholar 

  59. A Malik, F Chand, H Kumar and S C Mishra, Indian J. Phys. 86, 129 (2012)

    Article  ADS  Google Scholar 

  60. M R Meyers and C Krebs, Sci. Am. 230, 38 (1974)

    Article  Google Scholar 

  61. A Mishra and R Kumar, Phys. Lett. A 374, 2921 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for many useful suggestions and detailed comments that helped them to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitender Kumar.

Appendices

Appendix A

The general solutions to Jacobi elliptic equation and their derivative (see e.g. [53, 55]) are listed in table 1.

In table 1, the elliptic modulus m of the Jacobi elliptic functions varies between \( 0<m<1 \) and \(\mathrm {i}=\sqrt{-1}\).

Appendix B

When \( m \rightarrow 1\), the Jacobi elliptic functions sn(\(\xi \)), cn(\(\xi \)), dn(\(\xi \)), ns(\(\xi \)), cs(\(\xi \)), ds(\(\xi \)), sc(\(\xi \)) and sd(\(\xi \)) degenerate into hyperbolic functions as follows:

$$\begin{aligned} \begin{array}{ll} \mathrm{sn}(\xi )\rightarrow \tanh (\xi ), &{}\quad \mathrm{cn}(\xi )\rightarrow {{\mathrm{sech}}}(\xi ), \\ \mathrm{dn}(\xi )\rightarrow {{\mathrm{sech}}}(\xi ), &{}\quad \mathrm{cs}(\xi )\rightarrow \mathrm {cosech}(\xi ),\\ \mathrm{ds}(\xi )\rightarrow \mathrm {cosech}(\xi ), &{}\quad \mathrm{ns}(\xi )\rightarrow \coth (\xi ),\\ \mathrm{sc}(\xi )\rightarrow \sinh (\xi ), &{}\quad \mathrm{sd}(\xi )\rightarrow \sinh (\xi ) \end{array} \end{aligned}$$

and into trigonometric functions if \( m \rightarrow 0\) as follows:

$$\begin{aligned} \begin{array}{ll} \mathrm{sn}(\xi )\rightarrow \sin (\xi ), &{}\quad \mathrm{cn}(\xi )\rightarrow \cos (\xi ), \\ \mathrm{dn}(\xi )\rightarrow 1,&{}\quad \mathrm{ns}(\xi )\rightarrow \mathrm {cosec}(\xi ),\\ \mathrm{cs}(\xi )\rightarrow \cot (\xi ), &{}\quad \mathrm{ds}(\xi )\rightarrow \mathrm {cosec}(\xi ),\\ \mathrm{sc}(\xi )\rightarrow \tan (\xi ), &{}\quad \mathrm{sd}(\xi )\rightarrow \sin (\xi ). \end{array} \end{aligned}$$

Appendix C

$$\begin{aligned} \mathrm{cd}(\xi )=\dfrac{\mathrm{cn}(\xi )}{\mathrm{dn}(\xi )},&\quad \mathrm{dc}(\xi )=\dfrac{\mathrm{dn}(\xi )}{\mathrm{cn}(\xi )},\\ \mathrm{nc}(\xi )=\dfrac{1}{\mathrm{cn}(\xi )},&\quad \mathrm{nd}(\xi )=\dfrac{1}{\mathrm{dn}(\xi )},\\ \mathrm{cs}(\xi )=\dfrac{\mathrm{cn}(\xi )}{\mathrm{sn}(\xi )},&\quad \mathrm{sc}(\xi )=\dfrac{\mathrm{sn}(\xi )}{\mathrm{cn}(\xi )}, \\ \mathrm{sd}(\xi )=\dfrac{\mathrm{sn}(\xi )}{\mathrm{dn}(\xi )},&\quad \mathrm{ds}(\xi )=\dfrac{\mathrm{dn}(\xi )}{\mathrm{sn}(\xi )}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, A., Kumar, H., Chahal, R.P. et al. A dynamical study of certain nonlinear diffusion–reaction equations with a nonlinear convective flux term. Pramana - J Phys 92, 8 (2019). https://doi.org/10.1007/s12043-018-1668-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1668-0

Keywords

PACS Nos

Navigation