Skip to main content
Log in

Inducement and enhancement of multiple coherence resonances in unidirectionally coupled neural systems: Random and time-periodic coupling strength

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The effect of cooperative coupling strength (CCS), i.e., random coupling strength and time-periodic coupling strength, on multiple coherence resonances in unidirectionally coupled neural system has been investigated. Results show that noise, frequency and amplitude play efficient roles for the enhancement of various coherent behaviours. There exist an optimal frequency and an optimal amplitude which make the system to display the best coherent behaviours. Furthermore, the novel coherence biresonance (CBR) induced by frequency of CCS and coherence multiresonances (CMR) induced by amplitude of CCS, are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S M Bowyer, Bowyer Neuropsych. Electrophysiol. 2, 1 (2016)

    Article  Google Scholar 

  2. B Xu, Y B Gong, L Wang and C L Yang, Eur. Phys. J. B 85, 299 (2012)

    Article  ADS  Google Scholar 

  3. S Rajasekar and M A F Sanjuan, Nonlinear resonances, Springer Series in Synergetics, https://doi.org/10.1007/978-3-319-24886-8_7 (Springer International Publishing, Switzerland, 2016)

  4. E B M Ngouonkadi, M K Nono, V K Tamba and H B Fotsin, Eur. Phys. J. B 88, 299 (2015)

    Article  ADS  Google Scholar 

  5. A S Pikovsky and J Kurths, Phys. Rev. Lett. 78, 775 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  6. H J Xie, Y B Gong and Q Wang, Eur. Phys. J. B 89, 161 (2016)

    Article  ADS  Google Scholar 

  7. E Yilmaz, V Baysal, M Perc and M Ozer, Sci. China Tech. Sci. 59, 364 (2016)

    Article  Google Scholar 

  8. P Zhu and D C Mei, Eur. Phys. J. B 87, 109 (2014)

    Article  ADS  Google Scholar 

  9. A Zakharova, A Feoktistov, T Vadivasova and E Schöll, Eur. Phys. J. Special Topics 222, 2481 (2013)

    Article  ADS  Google Scholar 

  10. Y H Zheng, Q Y Wang and M F Danca, Cogn. Neurodyn. 8, 143 (2014)

    Article  Google Scholar 

  11. Y P Li and Q S Li, Chem. Phys. Lett. 417, 498 (2006-I)

  12. E R Boykin, P P Khargonekar, P R Carney, W O Ogle and S S Talathi, J. Comput. Neurosci. 32, 521 (2012)

    Article  MathSciNet  Google Scholar 

  13. J Y Qu, R B Wang, C K Yan and Y Du, Cogn. Neurodyn. 8, 157 (2014)

    Article  Google Scholar 

  14. M G Dell’Erba, G Cascallares, A D Sánchez and G G Izús, Eur. Phys. J. B 87, 82 (2014)

    Article  ADS  Google Scholar 

  15. E Yilmaz, M Uzuntarla, M Ozer and M Perc, Physica A 392, 5735 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. M Perc, Biophys. Chem. 141, 175 (2009)

    Article  Google Scholar 

  17. S Y Kim and W Lim, Cogn. Neurodyn. 7, 495 (2013)

    Article  Google Scholar 

  18. A Bîrzu and K Krischer, Chaos 20, 043114 (2010)

    Article  ADS  Google Scholar 

  19. E Yilmaz, V Baysal and M Ozer, Phys. Lett. A 379, 1594 (2015)

    Article  ADS  Google Scholar 

  20. X Lin, Y B Gong and L Wang, Chaos 21, 043109 (2011)

    Article  ADS  Google Scholar 

  21. Y N Wu, Y B Gong and Q Wang, Physica A 421, 347 (2015)

    Article  ADS  Google Scholar 

  22. L Wang, Y B Gong, X Lin and B Xu, Eur. Phys. J. B 85, 14 (2012)

    Article  ADS  Google Scholar 

  23. Q S Li and X F Lang, Phys. Rev. E 74, 031905 (2006-II)

  24. P S G Stein, S Grillner, A I Selverston and D G Stuart, Neurons, networks and motor behaviour (MIT Press, Cambridge, 1997)

  25. V In, A Kho, A Palacios, P Longhini, J D Neff and B K Meadows, Phys. Rev. Lett. 91, 244101 (2003)

    Article  ADS  Google Scholar 

  26. V In, A Bulsara, A Palacios, P Longhini, A Kho and J Neff, Phys. Rev. E 68, 045102 (2003)

    Article  ADS  Google Scholar 

  27. J F Lindner and A R Bulsara, Phys. Rev. E 74, 020105 (2006)

    Article  ADS  Google Scholar 

  28. C G Yao and M Zhan, Phys. Rev. E  81, 061129 (2010)

    Article  ADS  Google Scholar 

  29. S Rajamani and S Rajasekar, Phys. Scr. 88, 015010 (2013)

    Article  ADS  Google Scholar 

  30. R Jothimurugan, K Thamilmaran, S Rajasekar and M A F Sanjuán, Int. J. Bifurc. Chaos 23, 1350189 (2013)

    Article  Google Scholar 

  31. R A FitzHugh, Biophys. J.  1, 445 (1961)

    Article  ADS  Google Scholar 

  32. R Toral, C R Mirasso and J D Gunton, Europhys. Lett. 61, 162 (2003)

    Article  ADS  Google Scholar 

  33. J C Shi, M Luo and T Dong, Biosystems 98, 85 (2009)

    Article  Google Scholar 

  34. Q S Li and Y Liu, Phys. Rev. E 73, 016218 (2006)

    Article  ADS  Google Scholar 

  35. Q S Li and Y P Li, Phys. Rev. E 69, 031109 (2004)

    Article  ADS  Google Scholar 

  36. Q S Li and J C Shi, Phys. Lett. A 360, 593 (2007)

    Article  ADS  Google Scholar 

  37. J M G Vilar and J M Rubi, Phys. Rev. Lett. 78, 2886 (1997)

    Article  ADS  Google Scholar 

  38. Y Xu, J J Li, J Feng, H Q Zhang, W Xu and J Q Duan, Eur. Phys. J. B 86, 198 (2013)

    Article  ADS  Google Scholar 

  39. L Gammaitoni, P Hänggi, P Jung and F Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  40. S Mitaim and B Kosko, Proc. IEEE 86, 2152 (1998)

    Article  Google Scholar 

  41. C S Zhou, J Kurths and B Hu, Phys. Rev. Lett. 87, 098101 (2001)

    Article  ADS  Google Scholar 

  42. S Wang, J Xu, F Liu and W Wang, Eur. Phys. J. B 39, 351 (2004)

    Article  ADS  Google Scholar 

  43. C Zhou, J Kurths and B Hu, Phys. Rev. E 67, 030101 (2003)

    Article  ADS  Google Scholar 

  44. C J Wang, M Yi, K L Yang and L J Yang, BMC Systems Biology 6 (Suppl 1), S9(1–16) (2012)

  45. Y Zhang, G Hu and L Gammaitoni, Phys. Rev. E 58, 2952 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Natural Science Foundation of Guangxi Province No. 2013GXNSFAA019019 and the Natural Science Foundation of Guangxi Province No. 2013GXNSFAA019041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chusheng Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Luo, M. & Huang, C. Inducement and enhancement of multiple coherence resonances in unidirectionally coupled neural systems: Random and time-periodic coupling strength. Pramana - J Phys 89, 83 (2017). https://doi.org/10.1007/s12043-017-1481-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-017-1481-1

Keywords

PACS Nos

Navigation