Skip to main content
Log in

Oscillations and synchrony in a cortical neural network

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

In this paper, the oscillations and synchronization status of two different network connectivity patterns based on Izhikevich model are studied. One of the connectivity patterns is a randomly connected neuronal network, the other one is a small-world neuronal network. This Izhikevich model is a simple model which can not only reproduce the rich behaviors of biological neurons but also has only two equations and one nonlinear term. Detailed investigations reveal that by varying some key parameters, such as the connection weights of neurons, the external current injection, the noise of intensity and the neuron number, this neuronal network will exhibit various collective behaviors in randomly coupled neuronal network. In addition, we show that by changing the number of nearest neighbor and connection probability in small-world topology can also affect the collective dynamics of neuronal activity. These results may be instructive in understanding the collective dynamics of mammalian cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523

    Article  PubMed  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gade PM (1996) Synchronization of oscillators with random nonlocal connectivity. Phys Rev E 54:64–70

    Article  CAS  Google Scholar 

  • Gong YB, Xu B, Xu Q, Yang CL, Ren TQ, Hou ZH, Xin HW (2006) Ordering spatiotemporal chaos in complex thermosensitive neuron networks. Phys Rev E 73:046137

    Article  Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haken H (2002) Brain dynamics-synchronization and activity patterns in pulse-coupled neural nets with delays and noise. Springer, Berlin

    Google Scholar 

  • Hasegawa H (2005) Synchronizations in small-world networks of spiking neurons: diffusive versus sigmoid couplings. Phys Rev E 72:056139

    Article  Google Scholar 

  • He DH, Shi PL, Stone L (2003) Noise-induced synchronization in realistic models. Phys Rev E 67:027202

    Article  Google Scholar 

  • Heagy JF, Carroll TL, Pecora LM (1994) Synchronous chaos in coupled oscillator systems. Phys Rev E 50(3):1874–1885

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A qualitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking meurons. IEEE Trans Neural Networks 14(6):1569–1572

    Article  CAS  Google Scholar 

  • Izhikevich EM (2004a) Which model to use for cortical spiking neurons? IEEE Trans Neural Networks 15(5):1063–1070

    Article  Google Scholar 

  • Izhikevich EM (2004b) Spike-timing dynamics of neuronal groups. Cereb Cortex 14(8):933–944

    Article  PubMed  Google Scholar 

  • Kiss IZ, Zhai Y, Hudson JL, Zhou C, Kurths J (2003) Noise enhanced phase synchronization and coherence resonance in sets of chaotic oscillators with weak global coupling. Chaos 13(1):267–278

    Article  PubMed  Google Scholar 

  • Kitajo K, Doesburg SM, Yamanaka K, Nozaki D, Ward LM et al (2007) Noise-induced large-scale phase synchronization of human-brain activity associated with behavioural stochastic resonance. EPL 80:40009

    Article  Google Scholar 

  • Kwon O, Moon HT (2002) Coherence resonance in small-world networks of excitable cells. Phys Lett A 298:319–324

    Article  CAS  Google Scholar 

  • Liu XY, Cao JD (2011) Local synchronization of one-to-one coupled neural networks with discontinuous activations. Cogn Neurodyn 5(1):13–20

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Liu LG, Wang H (2012) Study on congestion and bursting in small-world networks with time delay from the viewpoint of nonlinear dynamics. Chin Phys Lett 29(6):060504

    Article  Google Scholar 

  • Manrubia SC, Mikhailov SM (1999) Synchronization and clustering in randomly coupled chaotic dynamical networks. Phys Rev E 60:1579–1589

    Article  CAS  Google Scholar 

  • Mehta MR, Lee AK, Wilson MA (2002) Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417:741–746

    Article  CAS  PubMed  Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nomura M, Fukai T, Aoyagi T (2003) Synchrony of fast-spiking interneurons interconnected by GABAergic and electrical synapses. Neural Comput 15:2179–2198

    Article  PubMed  Google Scholar 

  • Perc M (2007) Stochastic resonance on excitable small-world networks via a pacemaker. Phys Rev E 76:066203

    Article  Google Scholar 

  • Perc M, Gosak M (2008) Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators. New J Phys 10:053008

    Article  Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization, a universal concept in nonlinear sciences. Cambridge University Press, New York

    Book  Google Scholar 

  • Postnova S, Christian F, Jin W, Schneider H, Braun HA (2010) A computational study of the interdependencies between neuronal impulse pattern, noise effects and synchronization. J Physiol Paris 104:176–189

    Article  PubMed  Google Scholar 

  • Qu JY, Wang RB, Du Y, Cao JT (2012) Synchronization study in ring-like and grid-like neuronal networks. Cogn Neurodyn 6(1):21–31

    Article  PubMed Central  PubMed  Google Scholar 

  • Rose RM, Hindmarsh JL (1989) The assembly of ionic currents in a thalamic neuron. I The three-dimensional model. Proc R Soc Lond B 237:267–288

    Article  CAS  PubMed  Google Scholar 

  • Roxin A, Riecke H, Solla SA (2004) Self-sustained activity in a small-world network of excitable neurons. Phys Rev Lett 92:198101

    Article  PubMed  Google Scholar 

  • Rulkov NF, Bazhenov M (2008) Oscillations and synchrony in large-scale cortical network models. J Biol Phys 34:279–299

    Article  PubMed Central  PubMed  Google Scholar 

  • Rulkov NF, Timofeev I, Bazhenov M (2004) Oscillations in large-scale cortical networks: map-based model. J Comput Neurosci 17:203–223

    Article  CAS  PubMed  Google Scholar 

  • Sato YD, Shiino M (2007) Generalization of coupled spiking models and effects of the width of an action potential on synchronization phenomena. Phys Rev E 75:011909–011915

    Article  Google Scholar 

  • Shi X, Wang QY, Lu QS (2008) Firing synchronization and temporal order in noisy neuronal networks. Cogn Neurodyn 2(3):195–206

    Article  PubMed Central  PubMed  Google Scholar 

  • Singer W (1994) Time as coding space in neocortical processing. Springer, Berlin

    Google Scholar 

  • Stein RB (1967) Some models of neuronal variability. Biophys J 7(1):37–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stephens GJ, Silbert LJ, Hasson U (2010) Speaker-listener neural coupling underlies successful communication. Proc Natl Acad Sci USA 107:14425–14430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun WG, Wang RB, Wang WX, Cao JT (2010) Analyzing inner and outer synchronization between two coupled discrete-time networks with time delays. Cogn Neurodyn 4(3):225–231

    Article  PubMed Central  PubMed  Google Scholar 

  • Suykens JAK, Osipov GV (2008) Synchronization in complex networks. Chaos 18:037101

    Article  PubMed  Google Scholar 

  • Volman V, Baruchi I, Ben-Jacob E (2005) Manifestation of function-follow-form in cultured neuronal networks. Phys Biol 2(2):98–110

    Article  CAS  PubMed  Google Scholar 

  • Wang QY, Chen GR, Perc M (2011) Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS ONE 6(1):el5851

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small world’ networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Wei DQ, Luo XS (2007) Ordering spatiotemporal chaos in discrete neural networks with small-world connections. Europhys Lett 78:68004

    Article  Google Scholar 

  • Wu CW, Chua LO (1995) Synchronization in an array of linearly coupled dynamical systems. IEEE Trans Circ Syst I 42(8):430–447

    Article  Google Scholar 

  • Yu S, Huang DB, Singer W et al (2008) A small world of neuronal synchrony. Cereb Cortex 18(2):2891–2901

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou CS, Kurths J (2005) Noise-sustained and controlled synchronization of stirred excitable media by external forcing. New J Phys 7:18

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by Science and Technology Support Plan Topics (No. 2011BAH24B12), Key Program of National Natural Science Foundation of China (No. 11232005), Fundamental Research Funds for the Central Universities (No. ZXH2012C004) and Start-up Funds of Civil Aviation University (No. 2012QD09X).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyi Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, J., Wang, R., Yan, C. et al. Oscillations and synchrony in a cortical neural network. Cogn Neurodyn 8, 157–166 (2014). https://doi.org/10.1007/s11571-013-9268-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-013-9268-7

Keywords

Navigation