Skip to main content
Log in

Fission characteristics of 216Ra formed in heavy-ion induced reactions

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A Kramers-modified statistical model is used to calculate the cross-section of the evaporation residue, fission cross-section, average pre-fission multiplicities of protons and α-particles for 216Ra formed in 19F+ 197Au reactions and results are compared with the experimental data. To calculate these quantities, the effects of temperature and spin K about the symmetry axis have been considered in the calculations of the potential energy surfaces and the fission widths. It is shown that the results of the calculations using values of the temperature coefficient of the effective potential k = 0.008±0.003 MeV − 2 and scaling factor of the fission-barrier height r s = 1.004±0.002 are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. N Bohr and J A Wheeler, Phys. Rev . C 56, 426 (1939)

    Article  ADS  Google Scholar 

  2. H A Kramers, Physica VII (4), 284 (1940)

  3. P Grangé, J Q Li and H A Weidenmüller, Phys. Rev . C 27, 2063 (1983)

    Article  ADS  Google Scholar 

  4. I I Gontchar and P Fröbrich, Nucl. Phys. A 551, 495 (1993)

    Article  ADS  Google Scholar 

  5. D Boilley et al, Nucl. Phys. A 556, 67 (1993)

    Article  ADS  Google Scholar 

  6. H A Kramers, Physica (The Hague) 7, 284 (1940)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. J P Lestone, Phys. Rev . C 59, 1540 (1999)

    Article  ADS  Google Scholar 

  8. J P Lestone and S G McCalla, Phys. Rev . C 79, 044611 (2009)

    Article  ADS  Google Scholar 

  9. H Eslamizadeh, Eur. Phys. J. A 47, 1 (2011)

    Article  Google Scholar 

  10. H Eslamizadeh, J. Phys. G: Nucl. Part. Phys. 39, 085110 (2012)

    Article  Google Scholar 

  11. A V Karpov, P N Nadtochy, D V Vanin and G D Adeev, Phys. Rev . C 63, 054610 (2001)

    Article  ADS  Google Scholar 

  12. G Chaudhuri and S Pal, Phys. Rev . C 65, 054612 (2002)

    Article  ADS  Google Scholar 

  13. H Eslamizadeh, Pramana – J. Phys. 78, 231 (2012)

    Article  ADS  Google Scholar 

  14. H Eslamizadeh, Chin. J. Phys. 50, 385 (2012)

    Google Scholar 

  15. W Ye, Phys. Rev . C 81, 011603 (2010)

    Article  ADS  Google Scholar 

  16. B Bouriquet, Y Abe and D Boilley, Comp. Phys. Comm. 159, 1 (2004)

    Article  ADS  Google Scholar 

  17. Y Abe et al, Phys. Rep. 275, 49 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  18. M Blann, Phys. Rev . C 21, 1770 (1980)

    Article  ADS  Google Scholar 

  19. J E Lynn, The theory of neutron resonance reactions (Clarendon, Oxford, 1968) p. 325

  20. J P Lestone, Phys. Rev . C 51, 580 (1995)

    Article  ADS  Google Scholar 

  21. W D Myers and W J Swiatecki, Nucl. Phys. 81, 1 (1966)

    Google Scholar 

  22. W D Myers and W J Swiatecki, Ark. Fys. 36, 343 (1967)

    Google Scholar 

  23. A V Ignatyuk et al, Yad. Fiz. 1185 (1975); Sov. J. Nucl. Phys. 21, 612 (1975)

  24. A Bohr and B R Mottelson, Nuclear structure (W A Benjamin, 1975) Vol. II

  25. I I Gontchar, P Fröbrich and N I Pischasov, Phys. Rev . C 47, 2228 (1993)

    Article  ADS  Google Scholar 

  26. J Töke and W J Swiatecki, Nucl. Phys. A 372, 141 (1981)

    Article  ADS  Google Scholar 

  27. W Reisdorf, Z. Phys. A 300, 227 (1981)

    Article  ADS  Google Scholar 

  28. M Prakash, J Wambach and Z Y Ma, Phys. Lett. B 128, 141 (1983)

    Article  ADS  Google Scholar 

  29. S Shlomo, Nucl. Phys. A 539, 17 (1992)

    Article  ADS  Google Scholar 

  30. J P Lestone, Phys. Rev . C 52, 1118 (1995)

    Article  ADS  Google Scholar 

  31. P Fröbrich and I I Gontchar, Phys. Rep. 292, 131 (1998)

    Article  ADS  Google Scholar 

  32. F Pulnhofer, Nucl. Phys. A 280, 267 (1977)

    Article  ADS  Google Scholar 

  33. M Blann and T A Komoto, Lawrence Livermore National Laboratory, Report No. UCID 19390 (1982)

  34. M Blann and J Bisplinghoff, Lawrence Livermore National Laboratory, Report No. UCID 19614 (1982)

  35. A Gavron, Phys. Rev . C 21, 230 (1980)

    Article  ADS  Google Scholar 

  36. H Rossner, D Hilscher, D J Hinde, B Gebauer, M Lehmann, M Wilpert and E Mordhorst, Phys. Rev . C 40, 2629 (1989)

    Article  ADS  Google Scholar 

  37. J P Lestone et al, Nucl. Phys. A 559, 277 (1993)

    Article  ADS  Google Scholar 

  38. D J Hinde, A C Berriman, R D Butt, M Dasgupt, I I Gontchar, C R Morton, A Mukherjee and J O Newton, J. Nucl. Radiochem. Sci. 3, 31 (2002)

    Article  Google Scholar 

  39. H Ikezoe, N Shikazono, Y Nagame, Y Sugiyama, Y Tomita, K Ideno, I Nishinaka, B J Qi, H J Kim, A Iwamoto and T Ohtsuki, Phys. Rev . C 46, 1922 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The support of the Research Committee of Persian Gulf University is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HADI ESLAMIZADEH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ESLAMIZADEH, H. Fission characteristics of 216Ra formed in heavy-ion induced reactions. Pramana - J Phys 81, 807–817 (2013). https://doi.org/10.1007/s12043-013-0620-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0620-6

Keywords

PACS Nos

Navigation