Skip to main content
Log in

Evidence of compound nucleus theory in the population of incompletely fused composite system \(^{160}\)Dy*

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The fusion excitation functions of evaporation residues, populated through complete fusion and/or incomplete fusion, were measured in the \(^{18}\)O+\(^{146}\)Nd system at an incident beam energy of \(\approx \)  3–7 MeV/nucleon. These results were then compared with those obtained from the previously reported \(^{16}\)O+\(^{148}\)Nd system. This comparison is particularly relevant since both systems lead to the population of the same compound nucleus, \(^{164}\)Er*, in the case of complete fusion, and the same intermediate composite system, \(^{160}\)Dy*, in the case of incomplete fusion. Significant enhancements in the measured excitation functions of evaporation residues populated via \(\alpha \)-emitting channels indicate the population of such residues via incomplete fusion in addition to complete fusion. Further, a comparison of the measured data for \(^{18}\)O+\(^{146}\)Nd and \(^{16}\)O+\(^{148}\)Nd systems shows interesting results. The complete fusion and incomplete fusion cross-sections, reduced by three different procedures, are found to satisfactorily match each other, despite the major difference in the \({\alpha }\)- breakup threshold values of the projectiles \(^{18}\)O (6.23 MeV) and \(^{16}\)O (7.16 MeV). The effect of different \({\alpha }\)-breakup threshold values of the projectiles \(^{18}\)O and \(^{16}\)O was not observed in the comparison of incomplete fusion data for the systems \(^{18}\)O+\(^{146}\)Nd and \(^{16}\)O+\(^{148}\)Nd. This may be attributed to the fact that the residues populated in the exit channel are emitted from the same intermediate composite system \(^{160}\)Dy* and also there is a high resemblance in the entrance channel mass asymmetry and other structural properties of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Author’s comment: The cross section data are reported explicitly in tables in the article.]

References

  1. M. Dasgupta et al., Ann. Rev. Nucl. Part. Sci. 48, 401–461 (1998)

    Article  ADS  Google Scholar 

  2. J.T. Wilkison et al., Appl. Radiat. Isot. 178, 109935 (2021)

    Article  Google Scholar 

  3. B.B. Back et al., Rev. Mod. Phys. 86, 317 (2014)

    Article  ADS  Google Scholar 

  4. N. Bohr, Nature 137(3461), 344–348 (1936)

    Article  ADS  Google Scholar 

  5. S.N. Ghoshal, Phys. Rev. 80, 939 (1950)

  6. E. Prasad et al., Phys. Rev. C 81, 054608 (2010)

    Article  ADS  Google Scholar 

  7. Y. Nagashima, Phys. Rev. C 33, 176 (1986)

    Article  ADS  Google Scholar 

  8. A. Ruckelshausen et al., Phys. Rev. Lett. 56(22), 2356 (1986)

    Article  ADS  Google Scholar 

  9. A.C. Berriman et al., Nature 413, 144–147 (2001)

    Article  ADS  Google Scholar 

  10. V. Jha et al., Phys. Rep. 845, 1–58 (2020)

    Article  ADS  Google Scholar 

  11. A. Agarwal et al., Phys. Rev. C 103, 034602 (2021)

    Article  ADS  Google Scholar 

  12. A. Mahato et al., Euro. Phys. Jour. A 56, 131 (2020)

    Article  ADS  Google Scholar 

  13. P.K. Giri et al., Phys. Rev. C 100, 054604 (2019)

    Article  ADS  Google Scholar 

  14. D. Singh et al., Int. Jour. Mod. Phy. E 28(09), 1950069 (2019)

    Article  ADS  Google Scholar 

  15. P.P. Singh et al., Phys. Rev. C 78(1), 017602 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Singh et al., Phy. Lett. B 774, 7–13 (2017)

    Article  ADS  Google Scholar 

  17. H. Morgenstern et al., Phys. Rev. Lett. 52, 1104 (1984)

    Article  ADS  Google Scholar 

  18. D. Singh et al., Nucl. Phys. A 879, 107–131 (2012)

    Article  ADS  Google Scholar 

  19. A. Yadav et al., Phys. Rev. C 96(4), 044614 (2017)

    Article  ADS  Google Scholar 

  20. M. Shuaib et al., Phys. Rev. C 94, 014613 (2016)

    Article  ADS  Google Scholar 

  21. P.K. Giri et al., Phys. Rev. C 100(2), 024621 (2019)

    Article  ADS  Google Scholar 

  22. H. Kumar et al., Eur. Phys. J. A 54, 47 (2018)

    Article  ADS  Google Scholar 

  23. C.S. Palshetkar et al., Phys. Rev. C 82, 044608 (2010)

    Article  ADS  Google Scholar 

  24. P.K Rath et al., Nucl Phys A 874, 14-31 (2012)

  25. A. Singh et al., Phys. Rev. C 107, 054610 (2023)

    Article  ADS  Google Scholar 

  26. A. Mahato et al., Phys. Rev. C 106(1), 014613 (2022)

    Article  ADS  Google Scholar 

  27. L.F. Canto et al., Nucl. Phys. A 821, 51 (2009)

    Article  ADS  Google Scholar 

  28. L.F. Canto et al., J. Phys. G: Nucl. Part. Phys. 36, 015109 (2009)

    Article  ADS  Google Scholar 

  29. S. Muralithar et al., Eur. Phys. J. A 58, 250 (2022)

    Article  ADS  Google Scholar 

  30. P.K. Giri et al., Indian J. Pure Appl. Phys. 57(9), 675–678 (2019)

    Google Scholar 

  31. The Stopping and Range of Ions in Matter (SRIM-2008.04), https://www.srim.org

  32. E. T. Subramaniam, B. P. Ajith Kumar, and R. K. Bhowmik, http://www.iuac.res.in/NIAS

  33. https://www.nndc.bnl.gov/nudat3/

  34. N. Nica, Nuclear Data Sheets for A=157, 132, 1 (2016)

  35. C.W. Reich, Nuclear Data Sheets for A = 161. , 112, 2497-2713 (2011)

  36. M.A. Ansari et al., Ann. Nucl. Energy 11, 607 (1984)

    Article  Google Scholar 

  37. M. Cavinato et al., Phys. Rev. C 52, 2577 (1995)

    Article  ADS  Google Scholar 

  38. Ishfaq Majeed Bhat, et al., Phys. Rev. C 105, 054607 (2022)

  39. A. Gavron, Phys. Rev. C 21, 230 (1980)

    Article  ADS  Google Scholar 

  40. R. Bass, Phys. Rev. Lett. 39, 265 (1977)

    Article  ADS  Google Scholar 

  41. G.R. Satchler, Nucl. Phys. 70, 177 (1965)

    Article  Google Scholar 

  42. A. Yadav et al., Phys. Rev. C 86, 014603 (2012)

  43. P.R.S. Gomes et al., Phys. Rev. C 71, 017601 (2005)

  44. O. Akyüz and A. Winther, in Proceedings of the International School of Physics Enrico Fermi, Course LXXVII, edited by R. A. Broglia, R. A. Ricci, and C. H. Dasso (North-Holland, Amsterdam, 1981), p. 492

  45. A. Mahato et al., Phys. Rev. C 107, 014601 (2023)

    Article  ADS  Google Scholar 

  46. C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)

  47. B. Wang et al., Phys. Rev. C 90, 034612 (2014)

Download references

Acknowledgements

The authors are thankful to the Director and Convener, AUC, Inter-University Accelerator Centre (IUAC), New Delhi, India, for providing the necessary experimental facilities to carry out the experiments. The authors are thankful to the Target Laboratory In-Charge, Mr. Abhilash S. R., and the operational staff of the Pelletron Accelerator, IUAC, New Delhi, for providing good cooperation during the course of this experiment. DS acknowledges encouragement from the Vice-Chancellor of the Central University of Jharkhand (CUJ), Ranchi, India. The authors express their thanks to the Head, Department of Physics, CUJ, Ranchi, for their motivation and support. One of the authors, NS thanks UGC-DAE-CSR, Kolkata Centre, India for providing financial support in the form of a project fellowship (Ref. UGC-DAE-CSR-KC/CRS/19/NP16/0927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Singh.

Ethics declarations

Code Availability Statement

This manuscript has no associated code/software in a data repository. [Author’s comment: Not Applicable.]

Additional information

Communicated by Alessia Di Pietro.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Singh, D., Mahato, A. et al. Evidence of compound nucleus theory in the population of incompletely fused composite system \(^{160}\)Dy*. Eur. Phys. J. A 60, 72 (2024). https://doi.org/10.1140/epja/s10050-024-01293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01293-8

Navigation