Skip to main content
Log in

X-ray attenuation around K-edge of Zr, Nb, Mo and Pd: A comparative study using proton-induced X-ray emission and 241Am gamma rays

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Mass attenuation coefficients (µ/ρ) for Zr, Nb, Mo and Pd elements around their K-edges are measured at 14 energies in the range 15.744–28.564 keV using secondary excitation from thin Zr, Nb, Mo, Rh, Pd, Cd and Sn foils. The measurements were carried out at the K α and K β energy values of the target elements by two techniques: (1) Proton-induced X-ray emission (PIXE) and (2) 241Am (300 mCi) source. In PIXE, 2 MeV proton-excited X-rays were detected by a Si(Li) detector. In the second case, X-rays excited by 59.54 keV photons from the targets were counted by an HPGe detector under a narrow beam good geometry set-up with sufficient shielding. The results are consistent with theoretical values derived from the XCOM package and indicate that the PIXE data have better statistical accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R D Evans, The atomic nucleus (Tata McGraw Hill, New York, 1955) p. 713

    MATH  Google Scholar 

  2. D F Jackson, Nucl. Instrum. Methods 193, 387 (1982).

    Article  ADS  Google Scholar 

  3. A T L Tan, V Lakshminarayan, I S Giles and A Rajaratnam, Nuovo Cimento A99, 587 (1988).

    ADS  Google Scholar 

  4. U Turgat, E Buyukkasap, O Simsek and M Ertugrul, J. Quant. Spectros. Radiat. Transfer 92, 143 (2005).

    Article  ADS  Google Scholar 

  5. J H Hubbell, W H McMaster, N Kerr Del Grande and J H Mallet, Int. Tables X-Ray Crystallogr. 4, 47 (1974).

    Google Scholar 

  6. N Ramachandran, K Karunakaran Nair, K K Abdullah and K M Varier, Pramana — J. Phys. 67, 507 (2006).

    Article  ADS  Google Scholar 

  7. S B Appaji Gowda, M L Mallikarjuna, R Gowda and T K Umesh, Pramana — J. Phys. 61, 539 (2003).

    Article  ADS  Google Scholar 

  8. S B Appaji Gowda and T K Umesh, Nucl. Instrum. Methods in Phys. Res. B243, 2 (2006).

    ADS  Google Scholar 

  9. G Budak and A Karabulut, Nucl. Instrum. Methods in Phys. Res. B149, 379 (1999).

    ADS  Google Scholar 

  10. A A Tajuddin, C S Chong, A Shukri, A Bandyopadhyay and D A Bradley, Appl. Radiat. Isot. 46, 113 (1995).

    Article  Google Scholar 

  11. M L Mallikarjuna, S B Appaji Gowda, K E Ganesh, R Gowda and T K Umesh, Nucl. Instrum. Methods in Phys. Res. 215, 4 (2004).

    Article  ADS  Google Scholar 

  12. B R Kerur, V T Manjula, M T Lagare and S Anil Kumar, Radiat. Mea. 44, 63 (2009).

    Article  Google Scholar 

  13. M Angelone, T Bubba and A Esposito, Appl. Radiat. Isotopes 55 505 (2001).

    Google Scholar 

  14. U Turgut, O Simsek and E Buyukkasap, Pramana — J. Phys. 69, 199 (2007).

    Article  ADS  Google Scholar 

  15. K M Varier and M P Unnikrishnan, Phys. Rev. A33, 2382 (1986)

    ADS  Google Scholar 

  16. J Braziewicsz, E Braziewicsz and M Pajek, Nucl. Instrum. Methods in Phys. Res. B75(1–4), 68 (1993)

    ADS  Google Scholar 

  17. G Budak and R Polat, J. Quant. Spectrosc. Radiat. Transfer 88, 525 (2004)

    Article  ADS  Google Scholar 

  18. Recep Polat, Orhen Icelli and Gokhan Budak, Anal. Chim. Acta 505, 307 (2004)

    Article  Google Scholar 

  19. K K Abdullah, N Ramachandran, K Karunakaran Nair, B R S Babu, Antony Joseph, Rajive Thomas and K M Varier, Pramana — J. Phys. 70, 633 (2008)

    Article  ADS  Google Scholar 

  20. Masaya Tamura, Tadashi Akimoto, Yohei Aoki, Jiro Ikeda, Koichi Sato, Fumiyuki Fujita, Akira Homma, Teruko Sawamura and Masakuni Narita, Nucl. Instrum. Methods in Phys. Res. A484, 642 (2002)

    Article  ADS  Google Scholar 

  21. C T Chantler, C Q Tran, Z Barnea, D Paterson, D J Cookson and D X Balaic, Phys. Rev. A64, 062506.1–062506.15 (2001)

    ADS  Google Scholar 

  22. K K Abdullah, Studies on X-ray interactions near K-edge using 241 Am source and PIXE, Ph.D Thesis (unpublished) (University of Calicut, Calicut, India, 2007) and other references cited therein

    Google Scholar 

  23. E B Saloman and J H Hubbell, At. Data Nucl. Tables 38, 1 (1988) and other references therein

    Article  ADS  Google Scholar 

  24. M J Berger, J H Hubbell, S M Seltzer, J S Coursey and D S Zucker, ‘XCOM: Photon Cross Section Database (version 1.2)’ (Online), National Institute of Standards and Technology, Gaithersburg, MD (2003)

    Google Scholar 

  25. M J Berger and J H Hubbell, XCOM: Photon cross sections on a personal computer, Program manual, Centre for Radiation Research, National Bureau of Investigations Standards MD20899 (1990)

  26. M J Berger and J H Hubbell, XCOM version 3.1 — NIST Standard Reference Data Base (1999)

  27. C M Lederer and V S Shirly, Table of isotopes (Wiley Interscience, New York, 1978)

    Google Scholar 

  28. B P Ajithkumar and E T Subramaniam, Unpublished report (Inter University Accelerator Centre, New Delhi, 1995)

  29. R D Deslattes, An experimental study of X-ray attenuation coefficients, 8–30 keV, Dissertation (John Hopkins University, Baltimore, 1959)

    Google Scholar 

  30. M Kefi, J M Andre, Y Heno, G Giorgi and C Bonnelle, Phys. Rev. A45, 2859 (1992)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Varier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdullah, K.K., Karunakaran Nair, K., Ramachandran, N. et al. X-ray attenuation around K-edge of Zr, Nb, Mo and Pd: A comparative study using proton-induced X-ray emission and 241Am gamma rays. Pramana - J Phys 75, 459–469 (2010). https://doi.org/10.1007/s12043-010-0131-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0131-7

Keywords

Navigation