Skip to main content
Log in

K-shell X-ray intensity ratios and vacancy transfer probabilities of Pt, Au, and Pb by a simple method

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The K-shell X-ray intensity ratios, radiative and total vacancy transfer probablities of platinum, gold, and lead are measured by employing the 2π-geometrical configuration and a weak gamma source, a simple method proposed previously by our group. The targets of Pt, Au, and Pb were excited using γ-rays of weighted energy 123.6 keV from a weak 57Co source and the emitted K-shell X-rays were detected using an HPGe X-ray detector spectrometer coupled to a 16k multichannel analyzer. The measured values of these parameters are compared with the theoretical values and experimental data of other researchers, finding a good agreement. Thus, the 2π-geometrical configuration method with a weak gamma source can be alternative simple method to measure various atomic parameters in the field of X-ray spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. V. Rao, M. H. Chen, and B. Crasemann, Phys. Rev. A: At., Mol., Opt. Phys. 5, 997 (1972).

    Article  ADS  Google Scholar 

  2. W. Bambynek, B. Crasemann, R. W. Fink, H.-U. Freund, Hans Mark, C. D. Swift, R. E. Price, and P. Venugopala Rao, Rev. Mod. Phys. 44, 716 (1972).

    Article  ADS  Google Scholar 

  3. J. H. Hubbell, NISTIR, 89 (1989).

    Google Scholar 

  4. G. R. Lachance and F. Claisse, Quantitative X-Ray Fluorescence Analysis: Theory and Application (Wiley, New York, 1995).

    Google Scholar 

  5. U. Bergmann, P. Glatzel, F. deGroot, and S. P. Cramer, J. Am. Chem. Soc. 121, 4926 (1999).

    Article  Google Scholar 

  6. J. P. Hurley and J. M. Ferguson, Nucl. Phys. 27, 75 (1961).

    Article  Google Scholar 

  7. H. Primakoff and F. T. Porter, Phys. Rev. 89, 930 (1953).

    Article  ADS  Google Scholar 

  8. T. Mukoyama, K. Taniguchi, and H. Adachi, Adv. Quantum Chem. 37, 139 (2000).

    Article  ADS  Google Scholar 

  9. E. Arndt, G. Brunner, and E. Hartmann, J. Phys. B: At. Mol. Phys. 15, 887 (1982).

    Article  ADS  Google Scholar 

  10. N. V. Rao, S. B. Reddy, and D. L. Sastry, Nuovo Cimento 97, 1 (1987).

    Article  ADS  Google Scholar 

  11. E. Cengiz, E. Tiraşoǧlu, G. Apaydin, V. Aylikci, K. N. Aylikci, and C. Aksoy, Radiat. Phys. Chem. 80, 328 (2011).

    Article  ADS  Google Scholar 

  12. E. Cengiz, E. Tiraşoǧlu, V. Aylikci, and G. Apaydin, Radiat. Phys. Chem. 79, 809 (2010).

    Article  ADS  Google Scholar 

  13. T. L. Hopman, C. M. Heirwegh, J. L. Campbell, M. Krumrey, and F. Scholze, X-Ray Spectrom. 41, 164 (2012).

    Article  Google Scholar 

  14. G. Apaydin and E. Tiraşoǧlu, Radiat. Phys. Chem. 81, 1593 (2012).

    Article  ADS  Google Scholar 

  15. L. D. Horakeri, B. Hanumaiah, and S. R. Thontadarya, X-Ray Spectrom. 26, 69 (1997).

    Article  Google Scholar 

  16. L. D. Horakeri, B. Hanumaiah, and S. R. Thontadarya, X-Ray Spectrom. 27, 344 (1998).

    Article  Google Scholar 

  17. S. B. Gudennavar, N. M. Badiger, S. R. Thontadarya, and B. Hanumaiah, Radiat. Phys. Chem. 68, 721 (2003).

    Article  ADS  Google Scholar 

  18. S. B. Gudennavar, N. M. Badiger, S. R. Thontadarya, and B. Hanumaiah, Radiat. Phys. Chem. 68, 745 (2003).

    Article  ADS  Google Scholar 

  19. L. D. Horakeri, S. G. Bubbly, and S. B. Gudennavar, Radiat. Phys. Chem. 80, 626 (2011).

    Article  ADS  Google Scholar 

  20. E. Schönfield and H. Janßen, Nucl. Instrum. Methods Phys. Res., Sect. A 369, 527 (1996).

    Article  ADS  Google Scholar 

  21. M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, XCOM: Photon Cross Section Database (Version 1.3) (National Institute of Standards and Technology, Gaithersburg, Maryland, United States, 2005).

    Google Scholar 

  22. M. O. Krause, J. Phys. Chem. Ref. Data 8, 307 (1979).

    Article  ADS  Google Scholar 

  23. J. H. Scofield, At. Data Nucl. Data Tables 14, 121 (1974).

    Article  ADS  Google Scholar 

  24. G. Apaydin, V. Aylikci, E. Cengiz, N. Kaya, Y. Kobya, and E. Tiraşoǧ, Radiat. Phys. Chem. 77, 923 (2008).

    Article  ADS  Google Scholar 

  25. A. S. Bennal and N. M. Badiger, Nucl. Instrum. Methods Phys. Res., Sect. B 247, 161 (2006).

    Article  ADS  Google Scholar 

  26. R. Durak and Y. Ozdemir, J. Phys. B: At., Mol. Opt. Phys. 31, 3575 (1998).

    Article  ADS  Google Scholar 

  27. M. Ertuǧrul, O. Dogan, O. imsek, Ü. Turgut, and H. Erdogan, Phys. Rev. A: At., Mol., Opt. Phys. 55, 303 (1997).

    Article  ADS  Google Scholar 

  28. G. C. Nelson and B. G. Saunders, Phys. Rev. 188, 108 (1969).

    Article  ADS  Google Scholar 

  29. B. Ertuǧrul, G. Apaydin, U. Cevik, M. Ertuǧrul, and AI. Kobya, Radiat. Phys. Chem. 76, 15 (2007).

    Article  ADS  Google Scholar 

  30. J. H. McCrary, L. V. Singman, L. H. Ziegler, L. D. Looney, C. M. Edmonds, and Carolyn E. Harris, Phys. Rev. A: At., Mol., Opt. Phys. 4, 1745 (1971).

    Article  ADS  Google Scholar 

  31. A. G. de Pinho, Phys. Rev. A: At., Mol., Opt. Phys. 3, 905 (1971).

    Article  ADS  Google Scholar 

  32. B. Ertuǧrul, G. Apaydin, H. Baltas, U. Cevik, A. I. Kobya, and M. Ertuǧrul, Spectrochim. Acta, Part B 60, 519 (2005).

    Article  ADS  Google Scholar 

  33. A. S. Bennal, K. M. Niranjan, and N. M. Badiger, J. Quant. Spectrosc. Radiat. Transfer 111, 1363 (2010).

    Article  ADS  Google Scholar 

  34. M. R. Khan and M. Karimi, X-Ray Spectrom. 9, 32 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Gudennavar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, L.F.M., Gudennavar, S.B., Bubbly, S.G. et al. K-shell X-ray intensity ratios and vacancy transfer probabilities of Pt, Au, and Pb by a simple method. J. Exp. Theor. Phys. 119, 392–397 (2014). https://doi.org/10.1134/S1063776114090076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114090076

Keywords

Navigation