Skip to main content
Log in

K β to K α X-ray intensity ratios and K to L shell vacancy transfer probabilities of Co, Ni, Cu, and Zn

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The K to L shell total vacancy transfer probabilities of low Z elements Co, Ni, Cu, and Zn are estimated by measuring the K β to K α intensity ratio adopting the 2π-geometry. The target elements were excited by 32.86 keV barium K-shell X-rays from a weak 137Cs γ-ray source. The emitted K-shell X-rays were detected using a low energy HPGe X-ray detector coupled to a 16 k MCA. The measured intensity ratios and the total vacancy transfer probabilities are compared with theoretical results and others’ work, establishing a good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Aylikci, A. Kahoul, N. K. Aylikci, E. Tirasoglu, and I. H. Karahan, Spectroscop. Lett. 48, 331 (2014).

    Article  ADS  Google Scholar 

  2. D. Demir and Y. Sahin, Radiat. Phys. Chem. 85, 64 (2013).

    Article  ADS  Google Scholar 

  3. H. Baltas, B. Ertugral, C. Kantar, S. Sasmaz, E. Yilmaz, and U. Cevik, Acta Phys. Pol., A 119, 764 (2011).

    Google Scholar 

  4. I. Han and L. Demir, Radiat. Phys. Chem. 79, 1174 (2010).

    Article  ADS  Google Scholar 

  5. B. Ertugral, H. Baltas, A. Çelik, and Y. Kobya, Acta. Phys. Pol., A 117, 333 (2010).

    Google Scholar 

  6. E. Arndt, G. Brunner, and E. Hartmann, J. Phys. B: At. Mol. Phys. 15, 887 (1982).

    Article  ADS  Google Scholar 

  7. L. D. Horakeri, S. G. Bubbly, and S. B. Gudennavar, Radiat. Phys. Chem. 80, 626 (2011).

    Article  ADS  Google Scholar 

  8. L. D. Horakeri, B. Hanumaiah, and S. R. Thontadarya, X-Ray Spectrom. 27, 344 (1998).

    Article  Google Scholar 

  9. L. D. Horakeri, B. Hanumaiah, and S. R. Thontadarya, X-ray Spectrom. 26, 69 (1997).

    Article  Google Scholar 

  10. S. B. Gudennavar, N. M. Badiger, S. R. Thontadarya, and B. Hanumaiah, Am. J. Phys. 71 (8), 822 (2003).

    Article  ADS  Google Scholar 

  11. S. B. Gudennavar, N. M. Badiger, S. R. Thontadarya, and B. Hanumaiah, Radiat. Phys. Chem. 68, 721 (2003)

    Article  ADS  Google Scholar 

  12. S. B. Gudennavar, N. M. Badiger, S. R. Thontadarya, and B. Hanumaih, Radiat. Phys. Chem. 68, 745 (2003).

    Article  ADS  Google Scholar 

  13. A. S. Bennal, K. M. Niranjan, and N. M. Badiger, J. Quant. Spectr. Radiat. Transfer 111, 1363 (2010).

    Article  ADS  Google Scholar 

  14. A. S. Bennal and N. M. Badiger, J. Phys. B: At., Mol. Opt. Phys. 40, 2189 (2007).

    Article  ADS  Google Scholar 

  15. L. F. M. Anand, S. B. Gudennavar, S. G. Bubbly, and B. R. Kerur, J. Exp. Theor. Phys. 119 (3), 392 (2014).

    Article  Google Scholar 

  16. L. F. M. Anand, S. B. Gudennavar, J. Daisy, and S. G. Bubbly, Univers. J. Phys. Appl. 1, 83 (2013).

    Google Scholar 

  17. E. Schönfield and H. Janβen, Nucl. Instrum. Methods Phys. Res., Sect. A 369, 527 (1996).

    Article  ADS  Google Scholar 

  18. M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, XCOM: Photon Cross Section Database (version 1.3) (National Institute of Standards and Technology, Gaithersburg, Maryland, United States, 2005).

    Google Scholar 

  19. A. Kahoul, V. Aylikci, N. K. Aylikci, E. Cengiz, and G. Apaydin, Radiat. Phys. Chem. 81, 713 (2012).

    Article  ADS  Google Scholar 

  20. J. H. Hubbell, P. N. Trehan, N. Singh, B. Chand, D. Mehta, M. L. Garg, R. R. Garg, S. Singh, and S. Puri, J. Phys. Chem. Ref. Data 23, 339 (1994).

    Article  ADS  Google Scholar 

  21. P. V. Rao, M. H. Chen, and B. Crasemann, Phys. Rev. A: At., Mol., Opt. Phys. 15, 997 (1972).

    Article  ADS  Google Scholar 

  22. J. H. Scofield, At. Data Nucl. Data Tables 14, 121 (1974).

    Article  ADS  Google Scholar 

  23. S. T. Manson and D. J. Kennedy, At. Data Nucl. Data Tables 14, 112 (1974).

    Article  ADS  Google Scholar 

  24. M. R. Khan and M. Karimi, X-Ray Spectrom. 9, 32 (1980).

    Article  Google Scholar 

  25. A. Kahoul, N. K. Aylikci, V. Aylikci, B. Deghfel, Y. Kasri, and M. Nekkab, J. Radiat. Res. Appl. Sci. 7, 346 (2014).

    Article  Google Scholar 

  26. E. Cengiz, Z. Biyiklioglu, N. K. Aylikci, G. Apaydin, E. Tirasoglu, and H. Kantekin, Chin. J. Chem. Phys. 23, 138 (2010).

    Article  Google Scholar 

  27. B. Ertugral, G. Apaydin, U. Çevik, M. Ertugrul, and A. I. Kobya. Radiat. Phys. Chem. 76, 15 (2007).

    Article  ADS  Google Scholar 

  28. Ö Elif, J. Quant. Spectrosc. Radiat. Transfer 97, 41 (2006).

    Article  Google Scholar 

  29. M. Ertugral, Ö. Sögüt, Ö. Simsek, and E. Büyükkasap, J. Phys. B: At., Mol. Opt. Phys. 34, 909 (2001).

    Article  ADS  Google Scholar 

  30. B. Ertugral, G. Apaydin, A. Tekbiyik, E. Tirasoglu, U. Çevik, A. I. Kobya, and M. Ertugrul, Eur. Phys. J. D 37, 371 (2006).

    Article  ADS  Google Scholar 

  31. Ö. Sögüt, E. Büyükkasap, A. Küçükönder, and T. Tarakçioglu, Pramana 73, 711 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Gudennavar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, L.F.M., Gudennavar, S.B., Bubbly, S.G. et al. K β to K α X-ray intensity ratios and K to L shell vacancy transfer probabilities of Co, Ni, Cu, and Zn. J. Exp. Theor. Phys. 121, 961–965 (2015). https://doi.org/10.1134/S1063776115130087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115130087

Keywords

Navigation