Skip to main content
Log in

Genome-Wide Analysis of Nucleotide-Binding Site (NBS) Disease Resistance (R) Genes in Sacred Lotus (Nelumbo nucifera Gaertn.) Reveals Their Transition Role During Early Evolution of Land Plants

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Nucleotide-binding site (NBS) containing genes comprise the largest class in identified plant resistance genes. A total of 137 NBS class resistance genes were identified from the newly sequenced sacred lotus genome (Nelumbo nucifera Gaertn.) through a reiterative computational sequence analysis. Three distinct groups of NBS-encoding genes were classified: 5 with Toll/interleukin-1 receptor homology (TIR) domain at N-terminal (TIR-NBS [-LRR (leucine-rich repeat)]), 37 with CC (coiled coil) domain (CC-NBS [-LRR]), and 95 with neither TIR nor CC at N-terminal (NBS [-LRR]). Sequence analysis revealed high divergence of NBS-LRR genes in sacred lotus. The result of cluster and syntenic analysis of NBS genes suggested a duplication and recombination event, which is consistent with the correspondent result of whole genome analysis. In addition, we also identified 52 NBS genes which have a putative NACHT domain embedded in the NBS domains. This characteristic has only been reported in animals, fungi and bacteria, suggesting that NACHT and NBS domains shared a similar ancient origin; and sacred lotus NBS (NACHT) genes may represent a transition role during the early evolution of disease resistance in land plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NBS:

Nucleotide-binding site

NB-ARC:

NB, ARC1, and ARC2

NACHT:

NAIP, CIITA, HET-E, and TP1

TIR:

Toll/interleukin-1 receptor (TIR) homology domain

CC:

Coiled coil domain

LRR:

Leucine-rich repeat

R:

Resistance

References

  • Aarts N, Metz M, Holub E et al (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. PNAS 95:10306–10311

    Article  PubMed  CAS  Google Scholar 

  • Altschul S, Madden T, Schaffer A et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112:369–377

    Article  PubMed  CAS  Google Scholar 

  • Bai J, Pennill LA, Ning J et al (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12:1871–1884

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten A, Cannon S, Spangler R et al (2003) Genome-level evolution of resistance genes in Arabidopsis thaliana. Genetics 165:309–319

    PubMed  CAS  Google Scholar 

  • Bittner-Eddy PD, Beynon JL (2001) The Arabidopsis downy mildew resistance gene, RPP13-Nd, functions independently of NDR1 and EDS1 and does not require the accumulation of salicylic acid. Mol Plant Microbe Interact 14:416–421

    Article  PubMed  CAS  Google Scholar 

  • Bittner-Eddy PD, Crute IR, Holub EB et al (2000) RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J 21:177–188

    Article  PubMed  CAS  Google Scholar 

  • Burkhard P, Stetefeld J, Strelkov SV (2001) Coiled coils: a highly versatile protein folding motif. Trends Cell Biol 11:82–88

    Article  PubMed  CAS  Google Scholar 

  • Cannon SB, Zhu H, Baumgarten AM et al (2002) Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol 54:548–562

    Article  PubMed  CAS  Google Scholar 

  • Chen LS, Lin CW, Liu CD et al (2005) Identification of pathogens causing rhizome rot of the East Indian lotus. Plant Prot Bull (Taipei) 47

  • Cheng X, Jiang H, Zhao Y et al (2010) A genomic analysis of disease-resistance genes encoding nucleotide binding sites in Sorghum bicolor. Genet Mol Biol 33:292–297

    Article  PubMed  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B et al (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  • Cooley MB, Pathirana S, Wu H-J et al (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12:663–676

    PubMed  CAS  Google Scholar 

  • Deslandes L, Olivier J, Theulieres F et al (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. PNAS 99:2404–2409

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Zhang Z, Lu H et al (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. PNAS 107:13544–13549

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol 266:418–427

    Article  PubMed  CAS  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Gassmann W, Hinsch ME, Staskawicz BJ (1999) The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J 20:265–277

    Article  PubMed  CAS  Google Scholar 

  • Hinsch M, Staskawicz B (1996) Identification of a new Arabidopsis disease resistance locus, RPs4, and cloning of the corresponding avirulence gene, avrRps4, from Pseudomonas syringae pv. pisi. Mol Plant Microbe Interact 9:55–61

    Article  PubMed  CAS  Google Scholar 

  • Hughes A (2006) Evolutionary relationships of vertebrate NACHT domain-containing proteins. Immunogenetics 58:785–791

    Article  PubMed  CAS  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM et al (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  PubMed  CAS  Google Scholar 

  • Kohler A, Rinaldi C, Duplessis S et al (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66:619–636

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Aravind L (2000) The NACHT family—a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem Sci 25:223–224

    Article  PubMed  CAS  Google Scholar 

  • Kopp EB, Medzhitov R (1999) The Toll-receptor family and control of innate immunity. Curr Opin Immunol 11:13–18

    Article  PubMed  CAS  Google Scholar 

  • Kunkel BN, Bent AF, Dahlbeck D et al (1993) RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 5:865–875

    PubMed  CAS  Google Scholar 

  • Kwon SI, Koczan JM, Gassmann W (2004) Two Arabidopsis srfr (suppressor of rps4-RLD) mutants exhibit avrRps4-specific disease resistance independent of RPS4. Plant J 40:366–375

    Article  PubMed  CAS  Google Scholar 

  • Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet 20:116–122

    Article  PubMed  CAS  Google Scholar 

  • Maekawa T, Kufer TA, Schulze-Lefert P (2011) NLR functions in plant and animal immune systems: so far and yet so close. Nat Immunol 12:817–826

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB et al (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    Article  PubMed  CAS  Google Scholar 

  • McDonnell AV, Jiang T, Keating AE et al (2006) Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics 22:356–358

    Article  PubMed  CAS  Google Scholar 

  • McHale L, Tan X, Koehl P et al (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212

    Article  PubMed  Google Scholar 

  • Meyers BC, Kozik A, Griego A et al (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    PubMed  CAS  Google Scholar 

  • Ming R, Van Buren R, Liu Y et al (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol 14:R41. doi:10.1186/gb-2013-14-5-r41

  • Mohr TJ, Mammarella ND, Hoff T et al (2010) The Arabidopsis downy mildew resistance gene RPP8 is induced by pathogens and salicylic acid and is regulated by W box cis elements. Mol Plant Microbe Interact 23:1303–1315

    Article  PubMed  CAS  Google Scholar 

  • Monosi B, Wisser R, Pennill L et al (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109:1434–1447

    Article  PubMed  CAS  Google Scholar 

  • Mucyn TS, Clemente A, Andriotis VME et al (2006) The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell 18:2792–2806

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Wendel J, Fluhr R (2000) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50:203–213

    PubMed  CAS  Google Scholar 

  • Porter B, Paidi M, Ming R et al (2009) Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Genet Genomics 281:609–626

    Article  PubMed  CAS  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY et al (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  PubMed  CAS  Google Scholar 

  • Richter TE, Ronald PC (2000) The evolution of disease resistance genes. Plant Mol Biol 42:195–204

    Article  PubMed  CAS  Google Scholar 

  • Ronald PC, Beutler B (2010) Plant and animal sensors of conserved microbial signatures. Science 330:1061–1064

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Shen-Miller J, Mudgett MB, Schopf JW et al (1995) Exceptional seed longevity and robust growth: ancient sacred lotus from China. Am J Bot 82:1367–1380

    Article  Google Scholar 

  • Shen-Miller J, Schopf JW, Harbottle G et al (2002) Long-living lotus: germination and soil Y-irradiation of centuries-old fruits, and cultivation, growth, and phenotypic abnormalities of offspring. Am J Bot 89:236–247

    Article  PubMed  CAS  Google Scholar 

  • Song WY, Wang GL, Chen LL et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  PubMed  CAS  Google Scholar 

  • Tameling WI, Vossen JH, Albrecht M et al (2006) Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol 140:1233–1245

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 8:2731–2739

    Article  Google Scholar 

  • Tan S, Wu S (2012) Genome wide analysis of nucleotide-binding site disease resistance genes in Brachypodium distachyon. Comp Funct Genomics 2012:418208

    Article  PubMed  Google Scholar 

  • Tan X, Meyers BC, Kozik A et al (2007) Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biol 7:56

    Article  PubMed  Google Scholar 

  • Tarr DE, Alexander H (2009) TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders. BMC Res Notes 2:197

    Article  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • van der Biezen EA, Jones JD (1998) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:R226–R228

    Article  PubMed  Google Scholar 

  • van Ooijen G, Mayr G, Kasiem MMA et al (2008) Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot 59:1383–1397

    Article  PubMed  Google Scholar 

  • Wan H, Yuan W, Ye Q et al (2012) Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: characterization, genetic variation, functional divergence and expression patterns. BMC Genomics 13:502

    Article  PubMed  CAS  Google Scholar 

  • Wirthmueller L, Zhang Y, Jones JD et al (2007) Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense. Curr Biol 17:2023–2029

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Ellwood S, Calis O et al (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120

    Article  PubMed  CAS  Google Scholar 

  • Xu MH (1990) Sacred louts disease and control [in Chinese]. China Flower & Penjing 6:6

  • Yan N, Chai J, Lee ES et al (2005) Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature 437:831–837

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Zhang X, Yue J-X et al (2008) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Gen Genomics 280:187–198

    Article  CAS  Google Scholar 

  • Yue JX, Meyers BC, Chen JQ et al (2011) Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. New Phytol 193:1049–1063

    Article  PubMed  Google Scholar 

  • Zhang X-C, Gassmann W (2003) RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames. Plant Cell 15:2333–2342

    Article  PubMed  CAS  Google Scholar 

  • Zhang X-C, Gassmann W (2007) Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses. Plant Physiol 145:1577–1587

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Dorey S, Swiderski M et al (2004) Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J 40:213–224

    Article  PubMed  CAS  Google Scholar 

  • Zhou T, Wang Y, Chen J-Q et al (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Gen Genomics 271:402–415

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ming-Li Wang at the Hawai‘i Agriculture Research Center (HARC) for providing assistance with bioinformatics and Dr. Heather McCafferty at HARC for critical reviewing of the manuscript. This work was supported partially by a cooperative agreement (No. CA 58-5320-3-460) between the U.S. Department of Agriculture-Agricultural Research Service and HARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun J. Zhu.

Additional information

Communicated by Paul Arruda

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Putative NACHT domains embedded in NB-ARC domains among the predicted R genes. (DOC 164 kb)

Supplementary Table 2

List of syntenic pairs among the NBS encoding genes. (DOC 36 kb)

Supplementary Figure 1

Divergence analysis of NBS (NB-ARC and NACHT domains). A Neighbor-joining tree was constructed from distance matrices. The main branch grouped in shadow represents the NBS genes from different organisms showing similarity. The number next to the branch indicates the percentage of 1,000 bootstrap replicates, but some were not reported. Except for those proteins predicted from sacred lotus headed by “NNU”, the sacred lotus genes ended with “A” or “B” indicating NACHT, or NB-ARC. All the other NBS encoding proteins were randomly imported from Pfam database, and a unique accession number (UniProtKB/Swiss-Prot, www.uniprot.org) follows the abbreviation of the species name in brackets. Abbreviations of plant names were the same as these presented in Table 1, except, Am indicates Ailuropoda melanoleuca (Giant panda), Hs indicates Homo sapiens (Human), Mm for Mus musculus (Mouse), Ss for Sus scrofa (Pig), and Dr for Danio rerio (Zebrafish). (PPT 304 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, R.Z., Ming, R. & Zhu, Y.J. Genome-Wide Analysis of Nucleotide-Binding Site (NBS) Disease Resistance (R) Genes in Sacred Lotus (Nelumbo nucifera Gaertn.) Reveals Their Transition Role During Early Evolution of Land Plants. Tropical Plant Biol. 6, 98–116 (2013). https://doi.org/10.1007/s12042-013-9122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-013-9122-4

Keywords

Navigation