Skip to main content

Advertisement

Log in

Growing More Potatoes with Less Water

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Demand for potato is steadily rising in developing countries, where actual per-hectare production levels reach mere fractions of the yields achieved in Europe or North America. Improving abiotic stress tolerance, e.g., against drought, could increase these low potato yields and thus help to satisfy the growing demand for this crop. Hypotheses about genes and traits that could mitigate yield decreases caused by drought have been driven by information obtained from model plants and have recently been complemented with data of high throughput gene expression profiling and metabolite studies on potato genotypes under water stress. Principal tolerance traits that could diminish the vulnerability of potato yields to drought stress include improved detoxification of reactive oxygen species produced during stress, optimized stomatal control under drought to reduce water loss but at the same time allow for continuous CO2 access for photosynthesis, and mechanisms to protect proteins and membranes from damage by water stress. Candidate genes underlying these traits as well as genotypes that express them are available and, after appropriate validation, could be used for breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

HSP:

Heat-shock protein

LEA:

Late embryo abundant

masl:

Meters above sea level

ROS:

Reactive oxygen species

SNP:

Single nucleotide polymorphism

WUE:

Water use efficiency

References

  1. Abe H, Yamaguchi-Shinozaki K, Urao T et al (1997) Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    Article  PubMed  CAS  Google Scholar 

  2. Achard P, Cheng H, De Grauwe L et al (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  PubMed  CAS  Google Scholar 

  3. Allen EJ, Scott RK (1980) An analysis of growth of the potato crop. J Agr Sci 94:583–606

    Article  Google Scholar 

  4. Andre CM, Oufir M, Guignard C et al (2007) Antioxidant profiling of native Andean potato tubers (Solanum tuberosum L.) reveals cultivars with high levels of β-carotene, α-tocopherol, chlorogenic acid, and petanin. J Agric Food Chem 55:10839–10849

    Article  PubMed  CAS  Google Scholar 

  5. Arvin MJ, Donnelly DJ (2008) Screening potato cultivars and wild species to abiotic stresses using an electrolyte leakage bioassay. J Agric Sci Techn 10:33–42

    Google Scholar 

  6. Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ et al (eds) Photoinhibition (Topics in Photosynthesis), vol 9. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  7. Baenziger M, Edmeades GO, Beck D, Bellon M (2000) Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. CIMMYT, Mexico

    Google Scholar 

  8. Balasimha D (1983) Proline accumulation in water stressed potatoes. J Indian Potato Assoc 10:56–59

    Google Scholar 

  9. Ban QY, Wang YC, Yang CP et al (2008) LEA genes and drought tolerance. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 3:6

  10. Bansal KC, Nagarajan S, Sukumaran NP (1982) Stomal density and size in some potato varieties. J Indian Potato Assoc 9:33–36

    Google Scholar 

  11. Bansal KC, Nagarajan S (1986) Leaf water content, stomatal conductance and proline accumulation in leaves of potato (Solanum tuberosum L.) in response to water stress. Indian J Plant Physiol 29:397–404

    Google Scholar 

  12. Basu PS, Ashoo S, Sukumaran NP (1998) Changes in net photosynthetic rate and chlorophyll fluorescence in potato leaves induced by water stress. Photosynthetica 35:13–19

    Article  Google Scholar 

  13. Begg JE, Turner NC (1976) Crop water deficits. Adv Agron 28:161–217

    Article  CAS  Google Scholar 

  14. Bejarano L, Mignolet E, Devaux A et al (2000) Glycoalkaloids in potato tubers: the effect of variety and drought stress on the α-solanine and α-chaconine contents of potatoes. J Sci Food Agric 80:2096–2100

    Article  CAS  Google Scholar 

  15. Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci 21:43–47

    Google Scholar 

  16. Bowen WT (2003) Water productivity in potato production. In: Kijne JW, Barker R, Molden D (eds) Water productivity in agriculture: limits and opportunities for improvement. CABI Publishing, CAB International, Wallingford, pp 229–238

    Chapter  Google Scholar 

  17. Bradshaw JE, Hackett CA, Pande B et al (2008) QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). TAG 116:193–211

    Article  PubMed  Google Scholar 

  18. Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    Article  PubMed  CAS  Google Scholar 

  19. Broin M, Cuiné S, Eymery F et al (2002) The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage. Plant Cell 14:1417–1432

    Article  PubMed  CAS  Google Scholar 

  20. Castiglioni P, Warner D, Bensen RJ (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  PubMed  CAS  Google Scholar 

  21. Chefdor F, Bénédetti H, Depierreux C et al (2006) Osmotic stress sensing in Populus: components identification of a phosphorelay system. FEBS Lett 580:77–81

    Article  PubMed  CAS  Google Scholar 

  22. Coleman WK (2008) Evaluation of wild Solanum species for drought resistance: 1. Solanum gandarillasii Cardenas. Envir Exp Bot 62:221–230

    Google Scholar 

  23. dalla Costa L, delle Vedove G, Gianquinto G et al (1997) Yield, water use efficiency and nitrogen uptake in potato: influence of drought stress. Potato Res 40:19–34

    Article  Google Scholar 

  24. Deblonde PMK, Ledent JF (2001) Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. Europ J Agron 14:31–41

    Article  Google Scholar 

  25. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  26. Dóczi R, Kondrák M, Kovács G et al (2005) Conservation of the drought-inducible DS2 genes and divergences from their ASR paralogues in solanaceous species. Plant Physiol Biochem 43:269–276

    Article  PubMed  CAS  Google Scholar 

  27. Fan M, Jin LP, Huang SW et al (2007) Cloning and expression of a full-length cDNA of SoFtsH gene in potato under drought stress. Acta Agron Sinica 33:1748–1754

    CAS  Google Scholar 

  28. FAO 2003. Unlocking the water potential of agriculture. ISBN: 9251049114, http://www.fao.org/DOCREP/006/Y4525E/Y4525E00.HTM, Cited 15 Feb. 2009

  29. FAO 2008. Potato world. http://www.potato2008.org/en/world/index.html, Cited 15 Feb. 2009

  30. Frankel N, Carrari F, Hasson E, Iusem ND (2006) Evolutionary history of the Asr gene family. Gene 378:74–83

    Article  PubMed  CAS  Google Scholar 

  31. Garrett JL, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–198

    Article  Google Scholar 

  32. Gebhardt C, Li L, Pajerowska-Mukthar K et al (2007) Candidate gene approach to identify genes underlying quantitative traits and develop diagnostic markers in potato. Crop Sci 47:S106–S111

    Article  Google Scholar 

  33. Geigenberger R, Reimholz R, Geiger M et al (1997) Regulation of sucrose and starch metabolism in potato tubers in response to short-term water deficit. Planta 201:502–518

    Article  CAS  Google Scholar 

  34. Geigenberger P, Reimholz R, Deiting U et al (1999) Decreased expression of sucrose phosphate synthase strongly inhibits the water stress-induced synthesis of sucrose in growing potato tubers. Plant J 19:119–129

    Article  PubMed  CAS  Google Scholar 

  35. Giraud E, Ho LHM, Clifton R et al (2008) The absence of alternative oxidase1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol 147:595–610

    Article  PubMed  CAS  Google Scholar 

  36. Gosti F, Beaudoin N, Serizet C et al (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1909

    Article  PubMed  CAS  Google Scholar 

  37. Grillo S, Costa A, Tucci M et al (1995) Regulation of gene expression during cellular adaptation to water stress. In: Grillo S, Leone A (eds) Proceedings of the workshop physical stresses in plants: genes and their products for tolerance. Maratea, Italy, pp 163–169

    Google Scholar 

  38. Gustin MC, Albertyn J, Alexander M et al (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300

    PubMed  CAS  Google Scholar 

  39. Handa S, Bressan RA, Handa AK (1983) Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiol 73:834–843

    Article  PubMed  CAS  Google Scholar 

  40. Harris PM (1978) The potato crop. Chapman and Hall, London

    Google Scholar 

  41. Haverkort AJ, van de Waart M, Bodlaender KBA (1990) The effect of early drought stress on numbers of tubers and stolons of potato in controlled and field conditions. Potato Res 33:89–96

    Article  Google Scholar 

  42. Heuer B, Nadler A (1998) Physiological response of potato plants to soil salinity and water deficit. Plant Sci 137:43–51

    Article  CAS  Google Scholar 

  43. Hu H, Dai M, Yao J et al (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. PNAS 103:12987–12992

    Article  PubMed  CAS  Google Scholar 

  44. Iwama K (2008) Physiology of the potato: new insights into root system and repercussions for crop management. Potato Res 51:333–353

    Article  Google Scholar 

  45. Iyer S, Caplan A (1998) Products of proline catabolism can induce osmotically regulated genes in rice. Plant Physiol 116:203–211

    Article  CAS  Google Scholar 

  46. Jefferies RA (1993) Cultivar responses to water stress in potato: effects of shoot and roots. New Phytol 123:491–498

    Article  Google Scholar 

  47. Jefferies RA (1993) Responses of potato genotypes to drought. I. Expansion of individual leaves and osmotic adjustment. Ann Appl Biol 122:93–104

    Article  Google Scholar 

  48. Jefferies RA, MacKerron DKL (1993) Responses of potato genotypes to drought. II. Leaf area index, growth and yield. Ann Appl Biol 122:105–112

    Article  Google Scholar 

  49. Jiang GH, He YQ, Xu CG et al (2004) The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. TAG 108:688–698

    Article  PubMed  CAS  Google Scholar 

  50. Juenger TE, Mckay JK, Hausmann N et al (2005) Identification and characterization of QTL underlying whole plant physiology in Arabidopsis thaliana: Δ13C, stomatal conductance and transpiration efficiency. Plant Cell Environ 28:697–708

    Article  CAS  Google Scholar 

  51. Karlson D, Nakaminami K, Toyomasu T et al (2002) A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J Biol Chem 277:35248–35256

    Article  PubMed  CAS  Google Scholar 

  52. Kim JS, Park SJ, Kwak KJ et al (2007) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote cold adaptation process in Escherichia coli. Nucleic Acids Res 35:506–516

    Article  PubMed  CAS  Google Scholar 

  53. Kloosterman B, De Koeyer D, Griffiths R et al (2008) Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array. Funct Integr Genomics 8:329–340

    Article  PubMed  CAS  Google Scholar 

  54. Kolbe A, Tiessen A, Schluepmann H et al (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. PNAS 102:11118–11123

    Article  PubMed  CAS  Google Scholar 

  55. Kumar D, Minhas JS (1999) Effect of water stress on photosynthesis, productivity and water status in potato. J Indian Potato Assoc 26:7–10

    Google Scholar 

  56. Lahlou O, Ledent JF (2005) Root mass and depth, stolons and roots formed on stolons in four cultivars of potato under water stress. Europ J Agron 22:159–173

    Article  Google Scholar 

  57. Langenkaemper G, Manac’h N, Broin M et al (2001) Accumulation of plastid lipid-associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species. J Exp Bot 52:1545–1554

    Article  Google Scholar 

  58. Levitt J (1980) Responses of plants to environmental stresses, vol. 2, Water, radiation, salt and other stresses. Academic, New York, pp 93–128

    Google Scholar 

  59. Levy D (1983) Varietal differences in the response of potatoes to repeated short periods of water stress in hot climates. 1. Turgor maintenance and stomatal behaviour. Potato Res 26:303–313

    Article  Google Scholar 

  60. Levy D (1986) Genotypic variation in the response of potatoes (Solanum tuberosum L.) to high ambient temperatures and water deficit. Field Crops Res 15:85–96

    Article  Google Scholar 

  61. Li J, Burmeister M (2005) Genetical genomics: combining genetics with gene expression analysis. Human Mol Gen 14:R163–R169

    Article  CAS  Google Scholar 

  62. Liu F, Jensen CR, Shahanzari A et al (2005) ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci 168:831–836

    Article  CAS  Google Scholar 

  63. van Loon CD (1981) Effect of water stress on potato growth, development, and yield. American Potato J 58:51–69

    Article  Google Scholar 

  64. Lynch DR, Tai GCC (1989) Yield and yield component response of eight potato genotypes to water stress. Crop Sci 29:207–1211

    Article  Google Scholar 

  65. Malosetti M, van der Linden CG, Vosman B et al (2006) A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in Potato. Genetics 175:879–889

    Article  PubMed  CAS  Google Scholar 

  66. Man AL, Purcell PC, Hannappel U et al (1997) Potato SNF1-related protein kinase: molecular cloning, expression analysis and peptide kinase activity measurements. Plant Mol Biol 34:31–43

    Article  PubMed  CAS  Google Scholar 

  67. Mane S, Vazquez Robinet C, Ulanov A et al (2008) Molecular and physiological adaptation to prolonged drought stress in the leaves of two Andean potato genotypes. Funct Plant Biol 35:669–688

    Article  CAS  Google Scholar 

  68. Martin MW, Miller DE (1987) Alterations in irrigation schedules and rates to eliminate potato genotypes susceptible to water stress. In: Foldo NE, Hansen SE, Nielsen N et al (eds) Abstracts of conference papers and posters of the 10th triennial conference of the European Association for Potato Research. Aalborg, Denmark, p 21

    Google Scholar 

  69. Martin MW, Miller DE (1987) Advantages of water-stress resistant genotypes in the Northwest. American Potato J 64:448–449

    Google Scholar 

  70. Martin RJ, Jamieson PD, Wilson DR et al (1992) Effects of soil moisture deficits on yield and quality of ‘Russet Burbank’ potatoes. New Zealand J Crop Horticultural Sci 20:1–9

    Google Scholar 

  71. Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870

    Article  PubMed  CAS  Google Scholar 

  72. van der Mescht A, de Ronde JA, Merwe T et al (1998) Changes in free proline concentrations and polyamine levels in potato leaves during drought stress. South African J Sci 94:347–350

    Google Scholar 

  73. van der Mescht A, de Ronde JA, Slabbert MM et al (2007) Enhanced drought tolerance in transgenic potato expressing the Arabidopsis thaliana Cu/Zn superoxide dismutase gene. S Afr J Sci 103:169–173

    Google Scholar 

  74. Miernyk JA (2001) The J-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family of chaperones. Cell Stress Chaperones 6:209–218

    Article  PubMed  CAS  Google Scholar 

  75. Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plantarum 133:481–489

    Article  CAS  Google Scholar 

  76. Mould RD, Rutherfoord RJ (1980) The effect of moisture stress during consecutive growth stages on tuber yield and quality of BP1 potatoes (Solanum tuberosum L.). Crop Prod 9:89–92

    Google Scholar 

  77. Nelson DE, Repetti PP, Adams TR et al (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455

    Article  PubMed  Google Scholar 

  78. Nguyen TT, Klueva N, Chamareck V et al (2004) Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Gen Genom 272:35–46

    Article  CAS  Google Scholar 

  79. Ozturk ZN, Talamé V, Deyholos M et al (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573

    Article  CAS  Google Scholar 

  80. Pajerowska KM, Parker JE, Gebhardt C (2005) Potato homologues of Arabidopsis thaliana genes functional in defense signaling—Identification, genetic mapping and molecular cloning. Mol Plant Microb Interact 18:1107–1119

    Article  CAS  Google Scholar 

  81. Rensink WA, Iobst S, Hart A et al (2005) Gene expression profiling of potato responses to cold, heat, and salt stress. Funct Integr Genomics 5:201–207

    Article  PubMed  CAS  Google Scholar 

  82. Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  PubMed  CAS  Google Scholar 

  83. Rodrigues SM, Andrade MO, Soares-Gomes AP et al (2006) Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. J Exp Bot 57:1909–1918

    Article  PubMed  CAS  Google Scholar 

  84. Sakuma Y, Maruyama K, Osakabe Y et al (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  PubMed  CAS  Google Scholar 

  85. Schafleitner R, Gaudin A, Gutierrez RO et al (2007) Proline accumulation and real time PCR expression analysis of genes encoding enzymes of proline metabolism in relation to drought tolerance in Andean potato. Acta Physiologae Plantarum 29:1861–1664

    Google Scholar 

  86. Schafleitner R, Gutierrez R, Espino R et al (2007) Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis. Potato Res 50:71–85

    Article  CAS  Google Scholar 

  87. Schafleitner R, Gutierrez RO, Gaudin A et al (2007) Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiol Biochem 45:673–690

    Article  PubMed  CAS  Google Scholar 

  88. Selote DS, Bharti S, Khanna-Chopra R (2004) Drought acclimation reduces O2* accumulation and lipid peroxidation in wheat seedlings. Biochem Biophys Res Commun 314:724–729

    Article  PubMed  CAS  Google Scholar 

  89. Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  90. Sheveleva E, Chmara W, Bohnert HJ et al (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115:1211–1219

    PubMed  CAS  Google Scholar 

  91. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  92. Sobeih W, Dodd IC, Bacon MA et al (2004) Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root zone drying. J Exp Bot 55:2353–2364

    Article  PubMed  CAS  Google Scholar 

  93. Spitters CJT, Schapendonk AHCM (1990) Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation. Plant Soil 123:193–203

    Article  Google Scholar 

  94. Stiller I, Dulai S, Kondrák M et al (2008) Effects of drought on water content and photosynthetic parameters in potato plants expressing the trehalose-6-phosphate synthase gene of Saccharomyces cerevisiae. Planta 227:299–308

    Article  PubMed  CAS  Google Scholar 

  95. Streeter JG, Lohnes DG, Fioritto RJ (2001) Pattern of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant Cell Environ 24:429–438

    Article  CAS  Google Scholar 

  96. Sun W, Bernard C, van de Cotte B et al (2001) At-HSP17.6A, encoding a small heat shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:07–415

    Article  Google Scholar 

  97. Taji T, Ohsumi C, Iuchi S et al (2002) Important roles of drought- and cold inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  PubMed  CAS  Google Scholar 

  98. Tang L, Kim MD, Yang K-S et al (2008) Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Transgenic Res 17:705–715

    Article  PubMed  CAS  Google Scholar 

  99. Tang L, Tang H, Kwak SS et al (2008) Improving potato plants oxidative stress and salt tolerance by gene transfer both of Cu/Zn superoxide dismutase and ascorbate peroxidase. China Biotech 28:25–31

    CAS  Google Scholar 

  100. Teulat B, This D, Khairallah M et al (1998) Several QTLs involved in osmotic adjustment trait variation in barley (Hordeum vulgare L). TAG 96:688–698

    Article  CAS  Google Scholar 

  101. Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. PNAS 128:1271–1281

    CAS  Google Scholar 

  102. Tourneux C, Devaux A, Camacho MR et al (2003) Effect of water shortage on six potato genotypes in the highlands of Bolivia (II): water relations, physiological parameters. Agronomie 23:181–190

    Article  Google Scholar 

  103. Trebejo I, Midmore DJ (1990) Effect of water stress on potato growth, yield and water use in a hot and a cool tropical climate. J Agric Sci 114:321–334

    Article  Google Scholar 

  104. Tripathy JN, Zhang J, Robin S et al (2000) QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. TAG 100:1197–1202

    Article  CAS  Google Scholar 

  105. Urao T, Yakubov B, Satoh R et al (1999) A transmembrane hybrid-type histidine-aspartate kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    Article  PubMed  CAS  Google Scholar 

  106. Vasquez-Robinet C, Mane SP, Ulanov AV et al (2008) Physiological and molecular adaptations to drought in Andean potato genotypes. J Exp Bot 59:2109–2123

    Article  PubMed  CAS  Google Scholar 

  107. Vos J, Groenwold J (1988) Mean annual yield reductions of potatoes due to water deficits for Dutch weather conditions. Acta Horticulturae 214:61–70

    Google Scholar 

  108. Warren CR (2007) Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot 59:1475–1487

    Article  PubMed  CAS  Google Scholar 

  109. Wasilewska A, Vlad F, Sirichandra C (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    Article  CAS  PubMed  Google Scholar 

  110. Watkinson JI, Hendricks L, Sioson AA et al (2006) Accessions of Solanum tuberosum ssp. andigena show differences in photosynthetic recovery after drought stress as reflected in gene expression profiles. Plant Sci 171:745–758

    Article  CAS  Google Scholar 

  111. Weisz R, Kaminski J, Smilowitz Z (1994) Water deficit effects on potato leaf growth and transpiration: utilizing fraction extractable soil water for comparison with other crops. Am Pot J 71:829–840

    Article  Google Scholar 

  112. Wu G, Shao HB, Chu L-Y et al (2007) Insights into molecular mechanisms of mutual effect between plants and the environment. A review. Agron Sustain Dev 27:69–78

    Article  CAS  Google Scholar 

  113. Wu SB, Wirthensohn MG, Hunt P et al (2008) High resolution melting analysis of almond SNPs derived from ESTs. TAG 118:1–14

    Article  PubMed  CAS  Google Scholar 

  114. Yamada Y, Yasui H, Sakurai H (2008) Suppressive effect of caffeic acid and its derivatives on the generation of UVA-induced reactive oxygen species in the skin of hairless mice and pharmacokinetic analysis on organ distribution of caffeic acid in ddY mice. Photochem Photobiol 82:1668–1676

    Google Scholar 

  115. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  PubMed  CAS  Google Scholar 

  116. Yang L, Tang R, Zhu J et al (2008) Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing AtIpk2beta, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana. Plant Mol Biol 66:329–343

    Article  PubMed  CAS  Google Scholar 

  117. Zvia K, Bar-Zvi D (2008) Synergism between the chaperone-like activity of the stress regulated ASR1 protein and the osmolyte glycine-betaine. Planta 227:1213–1219

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to all collaborators and colleagues who contributed data and information for this review and to the two anonymous reviewers of this paper for their helpful comments. The work performed at CIP cited in this review has been supported by the governments of Austria and Luxembourg and by the Generation Challenge Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Schafleitner.

Additional information

Communicated by: Paul Moore

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schafleitner, R. Growing More Potatoes with Less Water. Tropical Plant Biol. 2, 111–121 (2009). https://doi.org/10.1007/s12042-009-9033-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-009-9033-6

Keywords

Navigation