Skip to main content
Log in

Remnants of SIRE1 retrotransposons in human genome?

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Evolution is unaimed changes in time that a genome is shaped by a collection of random mutations, recombination, integrations, and reorganizations. Transposable elements (TEs) are mobile fragments representing a major portion of most eukaryotic genomes, and are therefore considered as a key player in evolution. They are one of the main sources of genetic variability and have a large impact on genome structure and stability in eukaryotes. In this study, the plant SIRE1 retrotransposon insertions were demonstrated in the human genome by using barley SIRE1 interretrotransposon amplified polymorphism PCR (IRAP-PCR) primers. According to the IRAP-PCR analysis, different distribution patterns were observed for 24 participants used in this study. The polymorphism ratios of SIRE1 were calculated, and among all samples they were detected between 0 to 38%. Similarly, internal domains and LTR sequences of SIRE1 were investigated by sequencing. Partial GAG, RT and ENV gene sequences were detected in the human genome by performing sequence and bioinformatic analyses. According to the bioinformatic analysis, partial SIRE1 ENV sequences were interestingly detected in both human and chimpanzee chromosome 1. Partial SIRE1 ENV sequences in chromosome 1 were also found to be associated with neuroblastoma breakpoint family members’ (NBPFs) in humans. Polymorphic TE insertions in the human genome may be an essential source of natural genetic variation with subtle effects on genome regulation, providing considerable source material for ongoing human evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Altinkut A., Kotseruba V., Kirzhner V. M., Nevo E., Raskina O. and Belyayev A. 2006 Ac-like transposons in populations of wild diploid Triticeae species: comparative analysis of chromosomal distribution. Chromosome Res. 14, 307–317.

    Article  CAS  Google Scholar 

  • Altschul S. F., Gish W., Miller W., Myers E. W. and Lipman D. J. 1990 Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    Article  CAS  Google Scholar 

  • Batzer M. A. and Deininger P. L. 1991 A human-specific subfamily of Alu sequences. Genomics. 9, 481–487.

    Article  CAS  Google Scholar 

  • Bejerano G., Lowe C. B., Ahituv N., King B., Siepel A., Salama S. R. et al. 2006 A distal enhancer and an ultraconserved exon are derived from a novel retrotransposons. Nature. 441, 87–90.

    Article  CAS  Google Scholar 

  • Belshaw R., Pereira V., Katzourakis A., Talbot G., Paces J., Burt A. et al. 2004 Long-term reinfection of the human genome by endogenous retroviruses. Proc. Natl. Acad. Sci. USA 101, 4894–4899.

    Article  CAS  Google Scholar 

  • Benson G. 1999 Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580.

    Article  CAS  Google Scholar 

  • Biscotti M. A., Carducci F., Olmo E. and Canapa A. 2019 Vertebrate Genome Size and the Impact of Transposable Elements in Genome Evolution. In Evolution, Origin of Life Concepts and Methods (ed. P. Pontarotti), Springer, Cham, pp. 233–251.

    Google Scholar 

  • Blomberg J., Benachenhou F., Blikstad V., Sperber G. and Mayer J. 2009 Classification and nomenclature of endogenous retroviral sequences (ERVs): problems and recommendations. Gene 448, 115–123.

    Article  CAS  Google Scholar 

  • Brouha B., Schustak J., Badge R. M., Lutz-Prigge S., Farley A. H., Moran J. V. et al. 2003 Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl. Acad. Sci. USA 100, 5280–5285.

    Article  CAS  Google Scholar 

  • Bousios A., Darzentas N., Tsaftaris A. and Pearce S. R. 2010 Highly conserved motifs in non-coding regions of Sirevirus retrotransposons: the key for their pattern of distribution within and across plants. BMC Genomics 11, 89.

    Article  Google Scholar 

  • Bousios A., Minga E., Kalitsou N., Pantermali M., Tsaballa A. and Darzentas N. 2012 MASiVEdb: the sirevirus plant retrotransposon database. BMC Genomics 13, 158.

    Article  CAS  Google Scholar 

  • Cakmak B., Marakli S. and Gozukirmizi N. 2015 SIRE1 Retrotransposons in barley (Hordeum vulgare L.). Russ. J. Genet. 51, 661–672.

    Article  CAS  Google Scholar 

  • Cakmak B., Marakli S. and Gozukirmizi N. 2017 Sukkula retrotransposon movements in the human genome. Biotechnol. Biotechnol. Equip. 31, 900–905.

    Google Scholar 

  • Cakmak-Guner B., Karlik E., Marakli S. and Gozukirmizi N. 2018 Detection of HERV-K6 and HERV-K11 movements in human genome. Biomed Rep. 9, 1.

    Google Scholar 

  • Chesnay C., Kumar A. and Pearce S. R. 2007 Genetic diversity of SIRE1 retroelements in annual and parennial glycine species revealed using SSAP. Cell. Mol. Biol. Lett. 12, 103–110.

    Article  CAS  Google Scholar 

  • Chimpanzee Sequencing and Analysis Consortium 2005 Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87.

    Article  Google Scholar 

  • Chuong E. B., Elde N. C. and Feschotte C. 2017 Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86.

    Article  CAS  Google Scholar 

  • Cruz C. D., Salgado C. C. and Bhering L. L. 2014 Biometrics applied to molecular analysis in genetic diversity. Plant Breed. Biotechnol. 47–81.

  • Daniels S. B., Peterson K. R., Strausbaugh L. D., Kidwell M. G. and Chovnick A. 1990 Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124, 339–355.

    Article  CAS  Google Scholar 

  • Dawkins R. 1974 The Selfish Gene. Oxford University Press, New York.

  • de Koning A. P., Gu W., Castoe T. A., Batzer M. A. and Pollock D. D. 2011 Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7, e1002384.

    Article  Google Scholar 

  • Diskin S. J., Hou C., Glessner J. T., Attiyeh E. F., Laudenslager M., Bosse K. et al. 2009 Copy number variation at 1q21.1 associated with neuroblastoma. Nature 459, 987–991.

    Article  CAS  Google Scholar 

  • Du J. C., Grant D., Tian Z. X., Nelson R. T., Zhu L. C., Shoemaker R. C. et al. 2010 SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics 11, 113.

    Article  Google Scholar 

  • Edgar R. C. 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

    Article  CAS  Google Scholar 

  • Eirín-López J. M., Rebordinos L., Rooney A. P. and Rozas J. 2012 The birth-and-death evolution of multigene families revisited. Genome Dyn. 7, 170–196.

    Article  Google Scholar 

  • Elkina M. A., Erkenov T. A. and Glazko V. I. 2015 Mobile genetic elements as a tool for the analysis of genetic differentiation of varieties of cultivated plants and breeds of farm animals. IJRSR 6, 5893–5900.

    Google Scholar 

  • Esnault C., Maestre J. and Heidmann T. 2000 Human LINE retrotransposons generate processed pseudogenes. Nature Genet. 24, 363–367.

    Article  CAS  Google Scholar 

  • Felsenstein J. 1981 Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  CAS  Google Scholar 

  • Feschotte C. 2008 Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397–405.

    Article  CAS  Google Scholar 

  • Gao X., Havecker E. R., Baranov P. V., Atkins J. F. and Voytas D. F. 2003 Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA 9, 1422–1430.

    Article  CAS  Google Scholar 

  • Gelfand Y., Rodriguez A. and Benson G. 2007 TRDB—the tandem repeats database. Nucleic Acids Res. 35, D80–D87.

    Article  CAS  Google Scholar 

  • Gozukirmizi N., Yilmaz S., Marakli S. and Temel A. 2015 Retrotransposon-based molecular markers; tools for variation analyses in plants analysis in plants. In Applications of molecular markers in plant genome analysis and breeding (ed. K. Taski-Ajdukovic), pp. 19–45, Research Signpost, Kerala.

    Google Scholar 

  • Gozukirmizi N., Temel A., Marakli S. and Yilmaz S. 2016 Transposon activity in plant genomes. In Plant omics: trends and applications (eds. K. R. Hakeem, H. Tombuloğlu and G. Tombuloğlu), pp. 83–108. Springer-Verlag: Springer International Publishing Switzerland.

    Chapter  Google Scholar 

  • Guliyev M., Yilmaz S., Sahin K., Marakli S. and Gozukirmizi N. 2013 Human endogenous retrovirus H (Herv-H) genome insertion variations in humans. Mol. Med. Rep. 7, 1305–1309.

    Article  CAS  Google Scholar 

  • Gregory S. G., Barlow K. F., McLay K. E., Kaul R., Swarbreck D., Dunham A. et al. 2006 The DNA sequence and biological annotation of human chromosome 1. Nature 441, 315–321.

    Article  CAS  Google Scholar 

  • Havecker E. R., Gao X. and Voytas D. F. 2005 The sireviruses, a plant-specific lineage of the Ty1/copia retrotransposons, interact with a family of proteins related to dynein light chain. Plant Physiol. 139, 857–868.

    Article  CAS  Google Scholar 

  • Hayward A. 2017 Origin of the retroviruses: when, where, and how? Curr Opin Virol. 25, 23–27.

    Article  CAS  Google Scholar 

  • Hřibová E., Neumann P., Matsumoto T., Roux N., Macas J. and Doležel J. 2010 Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol. 10, 204.

    Article  Google Scholar 

  • Heras J., Dominguez C., Mata E., Pascual V., Lozano C., Torres C. et al. 2015 GelJ – a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics 16, 270.

    Article  Google Scholar 

  • Holligan D., Zhang X. Y., Jiang N., Pritham E. J. and Wessler S. R. 2006 The transposable element landscape of the model legume Lotus japonicas. Genetics 174, 2215–2228.

    Article  CAS  Google Scholar 

  • Ivancevic A. M., Walsh A. M., Kortschak R. D. and Adelson D. L. 2013 Jumping the fine LINE between species: horizontal transfer of transposable elements in animals catalyses genome evolution. BioEssays 35, 1071–1082.

    Article  CAS  Google Scholar 

  • Jaccard P. 1908 Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44, 223–270.

    Google Scholar 

  • Jurka J. 2000 Repbase Update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418–420.

    Article  CAS  Google Scholar 

  • Kalendar R., Grob T., Regina M., Suoniemi A. and Schulman A. 1999 IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 98, 704–711.

    Article  CAS  Google Scholar 

  • Karlik E., Gurbuz O., Yildiz Y. and Gozukirmizi N. 2021 Endogenous retrovirus HERV-K6 and HERV-K11 polymorphisms’ analyses in head and neck squamous cell carcinoma patients. Meta Gene 28, 100876.

    Article  CAS  Google Scholar 

  • Kazazian Jr H. H., Wong C., Youssoufian H., Scott A. F., Phillips D. G. and Antonarakis S. E. 1988 Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166.

    Article  Google Scholar 

  • Kojima K. K. 2018 Human transposable elements in Repbase: genomic footprints from fish to humans. Mob. DNA 9, 2.

    Article  Google Scholar 

  • Kumar S., Stecher G. and Tamura K. 2016 MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  CAS  Google Scholar 

  • Laland K. N., Uller T., Feldman M. W., Sterelny K., Müller G. B., Moczek A. et al. 2015 The extended evolutionary synthesis: its structure, assumptions and predictions. Proc Biol Sci. 282, 20151019.

    Google Scholar 

  • Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J. et al. 2001 Initial sequencing and analysis of the human genome. Nature. 409, 860–921.

    Article  CAS  Google Scholar 

  • Laten H. M. and Morris R. O. 1993 SIRE1, a long interspersed repetitive DNA element from soybean with weak sequence similarity to retrotransposons: initial characterization and partial sequence. Gene 134, 153–159.

    Article  CAS  Google Scholar 

  • Laten H. M., Havecker E. R., Farmer L. M. and Voytas D. F. 2003 SIRE1 an endogenous retrovirus family from Glycine max, is highly homogenous and evolutionary young. Mol. Biol. Evol. 20, 1222–1230.

    Article  CAS  Google Scholar 

  • Lynch M. 2007 The Origins of Genome Architecture. Sunderland, MA, Sinauer Associates.

  • Mager D. L. and Stoye J. P. 2015 Mammalian endogenous retroviruses. Microbiol. Spectr. 3, MDNA3-0009-2014.

  • Malik H. S., Henikoff S. and Eickbush T. H. 2000 Poised for contagion: Evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res. 10, 1307–1318.

    Article  CAS  Google Scholar 

  • Mao J., Zhang Q. and Cong Y. S. 2021 Human endogenous retroviruses in development and disease. Comp. Struct. Biotechnol. J. 2, 5978–5986.

    Article  Google Scholar 

  • Marchetto M. C. N., Narvaiza I., Denli A. M., Benner C., Lazzarini T. A., Nathanson J. et al. 2013 Differential L1 regulation in pluripotent stem cells of humans and apes. Nature 503, 525–529.

    Article  CAS  Google Scholar 

  • Martin W. F. 2017 Too much eukaryote LGT. BioEssays 39, 1700115.

    Article  Google Scholar 

  • Martín Sanz A., Gilsanz Gonzales S., Hasan Syed N., Jose Suso M., Caminoero Saldana C. and Flavell A. J. 2007 Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers. Mol. Genet. Genomics 278, 433–441.

    Article  Google Scholar 

  • McCarthy E. M., Liu J., Lizhi G. and McDonald J. F. 2002 Long terminal repeat retrotransposons of Oryza sativa. Genome Biol. 3, 1–11.

    Article  Google Scholar 

  • Mills R. E., Bennett E. A., Iskow R. C. and Devine S. E. 2007 Which transposable elements are active in the human genome? Trends Genet. 23, 183–191.

    Article  CAS  Google Scholar 

  • Moelling K. and Broecker F. 2019 Viruses and evolution - viruses first? A personal perspective. Front. Microbiol. 10, 523.

    Article  Google Scholar 

  • Mun S., Lee J., Kim Y. J., Kim H. S. and Han K. 2014 Chimpanzee-specific endogenous retrovirus generates genomic variations in the chimpanzee genome. PLoS One 9, e101195.

    Article  Google Scholar 

  • Murphy W. J., Frönicke L., O’Brien S. J. and Stanyon R. 2003 The origin of human chromosome 1 and its homologs in placental mammals. Genome Res. 13, 1880–1888.

    Article  CAS  Google Scholar 

  • Ostertag E. M., Goodier J. L., Zhang Y. and Kazazian Jr H. H. 2003 SVA elements are nonautonomous retrotransposons that cause disease in humans. Am. J. Hum. Genet. 73, 1444–1451.

    Article  CAS  Google Scholar 

  • Peccoud J., Cordaux R. and Gilbert C. 2018 Analyzing Horizontal Transfer of Transposable Elements on a Large Scale: Challenges and Prospects. BioEssays 40, 1–8.

    Article  Google Scholar 

  • Peterson-Burch B. D. and Voytas D. F. 2002 Genes of the Pseudoviridae (Ty1/copia retrotransposons). Mol. Biol. Evol. 19, 1832–1845.

    Article  CAS  Google Scholar 

  • Popesco M. C., Maclaren E. J., Hopkins J., Dumas L., Cox M., Meltesen L. et al. 2006 Human lineage specific amplification, selection, and neuronal expression of DUF1220 domains. Science 313, 1304–1307.

    Article  CAS  Google Scholar 

  • Ramsay L., Marchetto M. C., Caron M., Chen S. H., Busche S., Kwan T. et al. 2017 Conserved expression of transposon-derived non-coding transcripts in primate stem cells. BMC Genomics 18, 214.

    Article  Google Scholar 

  • Rebollo R., Romanish M. T. and Mager D. L. 2012 Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu. Rev. Genet. 46, 21–42.

    Article  CAS  Google Scholar 

  • Redon R., Ishikawa S., Fitch K. R., Feuk L., Perry G. H., Andrews T. D. et al. 2006 Global variation in copy number in the human genome. Nature 444, 444–454.

    Article  CAS  Google Scholar 

  • Schaack S., Gilbert C. and Feschotte C. 2010 Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol. Evol. 25, 537–546.

    Article  Google Scholar 

  • Schulman A. H. and Kalendar R. A. 2005 Movable feast: diverse retrotransposons and their contribution to barley genome dynamics. Cytogenet. Genome Res. 110, 598–600.

    Article  CAS  Google Scholar 

  • Skern-Mauritzen R. and Mikkelsen T. N. 2021 The information continuum model of evolution. Biosystems 209, 104510.

    Article  Google Scholar 

  • Sorek R., Ast G. and Graur D. 2002 Alu-containing exons are alternatively spliced. Genome Res. 12, 1060–1067.

    Article  CAS  Google Scholar 

  • Sotero-Caio C. G., Platt R. N., Suh A. and Ray D. A. 2017 Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol Evol 9, 161–177.

    Article  CAS  Google Scholar 

  • Soucy S. M., Huang J. and Gogarten J. P. 2015 Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16, 472–482.

    Article  CAS  Google Scholar 

  • Tamura K. and Nei M. 1993 Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526.

    CAS  Google Scholar 

  • Tuzun E., Sharp A. J., Bailey J. A., Kaul R., Morrison V. A., Pertz L. M. et al. 2005 Fine-scale structural variation of the human genome. Nat. Genet. 37, 727–732.

    Article  CAS  Google Scholar 

  • Vandepoele K., Van Roy N., Staes K., Speleman F. and Van Roy F. A. 2005 Novel gene family NBPF: intricate structure generated by gene duplications during primate evolution. Mol. Biol. Evol. 22, 2265–2274.

    Article  CAS  Google Scholar 

  • Vandepoele K. and van Roy F. 2007 Insertion of an HERV(K) LTR in the intron of NBPF3 is not required for its transcriptional activity. Virology 362, 1–5.

    Article  CAS  Google Scholar 

  • Vandepoele K., Andries V., Van Roy N., Staes K., Vandesompele J., Laureys G. et al. 2008 A constitutional translocation t(1;17) (p36.2;q11.2) in a neuroblastoma patient disrupts the human NBPF1 and ACCN1 genes. PLoS ONE 3, e2207.

    Article  Google Scholar 

  • Vandepoele K., Andries V. and Van Roy F. 2009 The NBPF1 promoter has been recruited from the unrelated EVI5 gene before simian radiation. Mol. Biol. Evol. 26, 1321–1332.

    Article  CAS  Google Scholar 

  • Villarreal L. P. and Witzany G. 2010 Viruses are essential agents within the roots and stem of the tree of life. J. Theor. Biol. 262, 698–710.

    Article  Google Scholar 

  • Viviani A., Ventimiglia M., Fambrini M., Vangelisti A., Mascagni F., Pugliesi C. et al. 2021 Impact of transposable elements on the evolution of complex living systems and their epigenetic control. Biosystems 210, 104566.

    Article  CAS  Google Scholar 

  • Wallau G. L., Ortiz M. F. and Loreto E. L. S. 2012 Horizontal transposon transfer in eukarya: Detection, bias, and perspectives. Genome Biol. Evol. 4, 689–699.

    Article  Google Scholar 

  • Wang L., Norris E. T. and Jordan I. K. 2017 Human Retrotransposon Insertion Polymorphisms Are Associated with Health and Disease via Gene Regulatory Phenotypes. Front. Microbiol. 8, 1418.

    Article  Google Scholar 

  • Wang L. and Jordan I. K. 2018 Transposable element activity, genome regulation and human health. Curr. Opin. Genet. Dev. 49, 25–33.

    Article  CAS  Google Scholar 

  • Warburton P. E., Hasson D., Guillem F., Lescale C., Jin X. and Abrusan G. 2008 Analysis of the largest tandemly repeated DNA families in the human genome. BMC Genomics 9, 533.

    Article  Google Scholar 

  • Ward M., Zhao S., Luo K., Pavlovic B., Karimi M. M., Stephens M. and Gilad Y. 2018 Silencing of transposable elements may not be a major driver of regulatory evolution in primate induced pluripotent stem cells. eLife 7, e33084.

    Article  Google Scholar 

  • Weber B., Wenke T., Frommel U., Schmidt T. and Heitkam T. 2010 The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance, chromosomal distribution, and age. Chromosome Res. 18, 247–263.

    Article  CAS  Google Scholar 

  • Wei W., Gilbert N., Ooi S. L., Lawler J. F., Ostertag E. M., Kazazian H. H. et al. 2001 Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol. 21, 1429–1439.

    Article  CAS  Google Scholar 

  • Wildschutte J. H., Williams Z. H., Montesion M., Subramanian R. P., Kidd J. M. and Coffin J. M. 2016 Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc. Natl. Acad. Sci. USA 113, E2326–E2334.

    Article  CAS  Google Scholar 

  • Wolf Y. J. and Koonin E. V. 2013 Genome reduction as the dominant mode of evolution. BioEssays 35, 829–837.

    Article  Google Scholar 

  • Wright S. I., Le Q. H., Schoen D. J. and Bureau T. E. 2001 Population dynamics of an Ac-like transposable element in self- and crosspollinating Arabidopsis. Genetics 158, 1279–1288.

    Article  CAS  Google Scholar 

  • Yohn C. T., Jiang Z., McGrath S. D., Hayden K. E., Khaitovich P., Johnson M. E. et al. 2005 Lineage-specific expansions of retroviral insertions within the genomes of African great apes but not humans and orangutans. PLoS Biol. 3, e110.

    Article  Google Scholar 

  • Yuzbasioglu G., Yilmaz S., Marakli S. and Gozukirmizi N. 2016 Analysis of Hopi/Osr27 and Houba/Tos5/Osr13 retrotransposons in rice. Biotechnol. Biotechnol. Equip. 30, 213–218.

    Article  CAS  Google Scholar 

  • Zimmerly S. and Semper C. 2015 Evolution of group II introns. Mob. DNA. 6, 7.

    Article  Google Scholar 

  • Zhuo X. and Feschotte C. 2015 Cross-species transmission and differential fate of an endogenous retrovirus in three mammal lineages. PLoS Pathog. 11, e1005279.

    Article  Google Scholar 

Download references

Acknowledgement

Scientific Research Projects Coordination Unit of Istanbul University (grant number FDK-2017-22142) has supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Buket Cakmak Guner or Elif Karlik.

Additional information

Corresponding editor: Durgadas P. Kasbekar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guner, B.C., Karlik, E. & Gozukirmizi, N. Remnants of SIRE1 retrotransposons in human genome?. J Genet 102, 10 (2023). https://doi.org/10.1007/s12041-022-01398-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-022-01398-3

Keywords

Navigation