Skip to main content

Advertisement

Log in

Dietary intake of Spirulina platensis alters HSP70 gene expression profiles in the brain of rats in an experimental model of mixed stress

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Spirulina platensis has gradually gained more attention for its therapeutic, antioxidant, and anti-inflammatory potential worldwide. However, the current molecular knowledge about the effects of spirulina on stress-related genes is rather limited. The effects of dietary intake of spirulina on the HSP70 gene expression were assessed in a controlled in vivo experimental design. Moreover, alterations in serum corticosterone levels, IL-2, IL-4, IFN-γ, triglyceride, ALT, AST, relative gene expression values, and the correlations between them were evaluated. A total of 36 rats were divided into four groups: control group, stress-only group, spirulina group, and spirulina+stress group. To control the dose administration, S. platensis was applied by a gastric gavage in stress groups. Crowded environment stress and hosting alone stress were applied to the stress-only group and spirulina + stress group. RNA was extracted from brain samples using TRIpure and the relative gene expression assessment was performed using Roche-LightCycler-480-II real-time PCR-System. Gene expression values were remarkably different among the four experimental groups. The differences between stress-only and the spirulina groups were statistically significant (P<0.05). The correlation between the HSP70 gene expression and the IFN-γ was found to be statistically significant (P<0.05; r=0.50). Results indicate a novel effect of spirulina on the HSP70 expression related to the stress-response. Data presented in this study may be useful for further studies to define not only the molecular genetic aspects through dietary S. platensis but also the effects of spirulina on stress-response and animal welfare.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Al-Deriny S. H., Dawood M. A., Abou Zaid A. A., Wael F., Paray B. A., Van Doan H. et al. 2020 The synergistic effects of Spirulina platensis and Bacillus amyloliquefaciens on the growth performance, intestinal histomorphology, and immune response of Nile tilapia (Oreochromis niloticus). Aquac. Rep. 17, 100390.

    Article  Google Scholar 

  • Ammon-Treiber S., Grecksch G., Stumm R., Riechert U., Tischmeyer H., Reichenauer A. et al. 2004 Rapid, transient, and dose-dependent expression of hsp70 messenger RNA in the rat brain after morphine treatment. Cell Stress Chaperones 9, 182–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird N. A., Turnbull D. W. and Johnson E. A. 2006 Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. J. Biol. Chem. 281, 38675–38681.

    Article  CAS  PubMed  Google Scholar 

  • Bei E. S., Salpeas V., Alevizos B., Anagnostara C., Pappa D. and Moutsatsou P. 2013 Pattern of heat shock factor and heat shock protein expression in lymphocytes of bipolar patients: increased HSP70-glucocorticoid receptor heterocomplex. J. Psychiatr. Res. 47, 1725–1736.

    Article  CAS  PubMed  Google Scholar 

  • Bhat V. B. and Madyastha K. 2000 C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochem. Biophys. Res. Commun. 275, 20–25.

    Article  CAS  PubMed  Google Scholar 

  • Chen J.-C., Liu K. S., Yang T.-J., Hwang J.-H., Chan Y.-C. and Lee I.-T. 2012 Spirulina and C-phycocyanin reduce cytotoxicity and inflammation-related genes expression of microglial cells. Nutr. Neurosci. 15, 252–256.

    Article  CAS  PubMed  Google Scholar 

  • De Mattos B. O., López-Olmeda J. F., Guerra-Santos B., Ruiz C. E., García-Beltrán J. M., Ángeles-Esteban M. et al. 2019 Coping with exposure to hypoxia: modifications in stress parameters in gilthead seabream (Sparus aurata) fed spirulina (Arthrospira platensis) and brewer’s yeast (Saccharomyces cerevisiae). Fish Physiol. Biochem. 45, 1801–1812.

    Article  PubMed  Google Scholar 

  • Gancarczyk M., Paziewska-Hejmej A., Carreau S., Tabarowski Z. and Bilińska B. 2004 Dose-and photoperiod-dependent effects of 17β-estradiol and the anti-estrogen ICI 182,780 on testicular structure, acceleration of spermatogenesis, and aromatase immunoexpression in immature bank voles. Acta Histochem. 106, 269–278.

    Article  CAS  PubMed  Google Scholar 

  • Garcia A., Marti O., Valles A., Dal-Zotto S. and Armario A. 2000 Recovery of the hypothalamicpituitary-adrenal response to stress. Effect of stress intensity, stress duration and previous stress exposure. Neuroendocrinology 72, 114–125.

    CAS  PubMed  Google Scholar 

  • Giffard R. G., Han R. Q., Emery J. F., Duan M. and Pittet J. F. 2008 Regulation of apoptotic and inflammatory cell signaling in cerebral ischemia: the complex roles of heat shock protein 70. Anesthesiology 109, 339–348.

    Article  CAS  PubMed  Google Scholar 

  • Gong S., Miao Y.-L., Jiao G.-Z., Sun M.-J., Li H., Lin J. et al. 2015 Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice. PLoS One 10, e0117503.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajati H., Zaghari M., Noori O., Negarandeh R. and de Oliveira H. C. 2021 Effects of in ovo injection of microalgae on hatchability, antioxidant and immunity-related genes expression, and post-hatch performance in broilers and Japanese quails. Ital. J. Anim. Sci. 20, 985–994.

    Article  CAS  Google Scholar 

  • Hajati H., Zaghari M. and Oliveira H. 2020 Arthrospira (Spirulina) Platensis can be considered as a probiotic alternative to reduce heat stress in laying Japanese quails. Braz. J. Poult. Sci. 22, 1–8.

    Article  Google Scholar 

  • Han L.-K., Li D.-X., Xiang L., Gong X.-J., Kondo Y., Suzuki I. et al. 2006 Isolation of pancreatic lipase activity-inhibitory component of Spirulina platensis and it reduce postprandial triacylglycerolemia. Yakugaku Zasshi: J. Pharm. Soc. Jpn. 126, 43–49.

    Article  CAS  Google Scholar 

  • Hoffmann A. A. and Merila J. 1999 Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol. Evol. 14, 96–101.

    Article  CAS  PubMed  Google Scholar 

  • Hoor F. T., Rietveld W., Kooij M. and Flory W. 1980 Growth and 24 hour eating patterns of rats kept under various light: dark conditions. Lab. Anim. 1980, 251–252.

    Article  Google Scholar 

  • Iwamoto K., Kakiuchi C., Bundo M., Ikeda K. and Kato T. 2004 Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol. Psychiatry 9, 406–416.

    Article  CAS  PubMed  Google Scholar 

  • Izumoto S. and Herbert J. 1993 Widespread constitutive expression of HSP90 messenger RNA in rat brain. J. Neurosci. Res. 35, 20–28.

    Article  CAS  PubMed  Google Scholar 

  • Juárez-Oropeza M. A., Mascher D., Torres-Duran P., Farias J. M. and Paredes-Carbajal M. C. 2009 Effects of dietary Spirulina on vascular reactivity. J. Med. Food 12, 15–20.

    Article  PubMed  Google Scholar 

  • Karl I., Sørensen J. G., Loeschcke V. and Fischer K. 2009 HSP70 expression in the Copper butterfly Lycaena tityrus across altitudes and temperatures. J. Evol. Biol. 22, 172–178.

    Article  CAS  PubMed  Google Scholar 

  • Kiang J. G. and Tsokos G. C. 1998 Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol. Ther. 80, 183–201.

    Article  CAS  PubMed  Google Scholar 

  • Kim J. and Yenari M. 2017 Heat shock proteins and the stress response. In Primer on cerebrovascular diseases (eds. L. R. Caplan, J. Biller, M. Leary, E. Lo, A. Thomas, M. Yenari and J. Zhang), Elsevier, Amsterdam, pp. 273–275.

    Chapter  Google Scholar 

  • Kozul C. D., Nomikos A. P., Hampton T. H., Warnke L. A., Gosse J. A., Davey J. C. et al. 2008 Laboratory diet profoundly alters gene expression and confounds genomic analysis in mouse liver and lung. Chem. Biol. Interact. 173, 129–140.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A., Christian P. K., Panchal K., Guruprasad B. and Tiwari A. K. 2017 Supplementation of spirulina (Arthrospira platensis) improves lifespan and locomotor activity in paraquat-sensitive DJ-1β Δ93 flies, a Parkinson’s Disease model in Drosophila melanogaster. J. Diet. Suppl. 14, 573–588.

    Article  CAS  PubMed  Google Scholar 

  • Lee D. Y., Kim E., and Choi M. H. 2015 Technical and clinical aspects of cortisol as a biochemical marker of chronic stress. BMB Rep. 48, 209–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H., Guo S., Cai L., Ma W. and Shi Z. 2017 Lipopolysaccharide and heat stress impair the estradiol biosynthesis in granulosa cells via increase of HSP70 and inhibition of smad3 phosphorylation and nuclear translocation. Cell. Signall. 30, 130–141.

    Article  CAS  Google Scholar 

  • Livak K. J. and Schmittgen T. D. 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Løbner M., Walsted A., Larsen R., Bendtzen K. and Nielsen C. H. 2008 Enhancement of human adaptive immune responses by administration of a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis. J. Med. Food 11, 313–322.

    Article  PubMed  Google Scholar 

  • Mao T., Van de Water J. and Gershwin M. E. 2000 Effect of Spirulina on the secretion of cytokines from peripheral blood mononuclear cells. J. Med. Food 3, 135–140.

    Article  CAS  PubMed  Google Scholar 

  • Mazokopakis E. E., Starakis I. K., Papadomanolaki M. G., Mavroeidi N. G. and Ganotakis E. S. 2014 The hypolipidaemic effects of Spirulina (Arthrospira platensis) supplementation in a Cretan population: a prospective study. J. Sci. Food Agric. 94, 432–437.

    Article  CAS  PubMed  Google Scholar 

  • McCarty M. F. 2007 Clinical potential of Spirulina as a source of phycocyanobilin. J. Med. Food 10, 566–570.

    Article  CAS  PubMed  Google Scholar 

  • McCarty M. F. 2015 NADPH Oxidase activity in cerebral arterioles is a key mediator of cerebral small vessel disease-implications for prevention. Healthcare 3, 233–251.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagaoka S., Shimizu K., Kaneko H., Shibayama F., Morikawa K., Kanamaru Y. et al. 2005 A novel protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. J. Nutr. 135, 2425–2430.

    Article  CAS  PubMed  Google Scholar 

  • Park J., Lee S. and Kim I. 2018 Effect of dietary Spirulina (Arthrospira) platensis on the growth performance, antioxidant enzyme activity, nutrient digestibility, cecal microflora, excreta noxious gas emission, and breast meat quality of broiler chickens. Poult. Sci. 97, 2451–2459.

    Article  CAS  PubMed  Google Scholar 

  • Park S.-H., Kim I.-G., Kim H.-C., Gang M.-J., Son S.-E. and Lee H.-J. 2015 Influence of various photoperiods on stress hormone production, immune function, and hematological parameters in ICR mice. Korean J. Vet. Res. 55, 111–116.

    Article  Google Scholar 

  • Piniella-Matamoros B., Marin-Prida J. and Penton-Rol G. 2021 Nutraceutical and therapeutic potential of Phycocyanobilin for treating Alzheimer’s disease. J. Biosci. 46, 42.

    Article  CAS  Google Scholar 

  • Ramamoorthy A. and Premakumari S. 1996 Effect of supplementation of Spirulina on hypercholesterolemic patients. J. Food Sci. Technol. 33, 124–127.

    Google Scholar 

  • Reddy M. C., Subhashini J., Mahipal S., Bhat V. B., Reddy P. S., Kiranmai G. et al. 2003 C-Phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 304, 385–392.

    Article  CAS  PubMed  Google Scholar 

  • Rimbau V., Camins A., Romay C., González R. and Pallàs M. 1999 Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus. Neurosci. Lett. 276, 75–78.

    Article  CAS  PubMed  Google Scholar 

  • Riss J., Décordé K., Sutra T., Delage M., Baccou J.-C., Jouy N. et al. 2007 Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J. Agric. Food Chem. 55, 7962–7967.

    Article  CAS  PubMed  Google Scholar 

  • Saranraj P. and Sivasakthi S. 2014 Spirulina platensis—food for future: a review. Asian J. Pharm. Sci. 4, 26–33.

    Google Scholar 

  • Seyidoglu N., Inan S. and Aydin C. 2017 A prominent superfood: Spirulina platensis. In Superfood and functional food-the development of superfoods and their roles as medicine, Chapter 1 (eds. N. Shiomi and V. Waisundara), Intech, London, pp. 1–27.

    Google Scholar 

  • Seyidoglu N., Koseli E., Gurbanli R. and Aydin C. 2021 Role of essential oils in antioxidant capacity and immunity in a rat model of mixed stress. S. Afr. J. Anim. Sci. 51, 426–436.

    Article  CAS  Google Scholar 

  • Smith C. 2012 Using Rodent Models to Simulate Stress of Physiologically Relevant Severity: When, Why and How. In Glucocorticoids - new recognition of our familiar friend (ed. X. Qian), pp 211–230. IntechOpen, Rijeka, Croatia.

    Google Scholar 

  • Sørensen J. G., Dahlgaard J. and Loeschcke V. 2001 Genetic variation in thermal tolerance among natural populations of Drosophila buzzatii: down regulation of Hsp70 expression and variation in heat stress resistance traits. Funct. Ecol. 15, 289–296.

    Article  Google Scholar 

  • Sørensen J. G., Kristensen T. N. and Loeschcke V. 2003 The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 6, 1025–1037.

    Article  Google Scholar 

  • Sørensen J. G., Nielsen M. M. and Loeschcke V. 2007 Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors. J. Evol. Biol. 20, 1624–1636.

    Article  PubMed  Google Scholar 

  • Sharp F. R., Massa S. M. and Swanson R. A. 1999 Heat-shock protein protection. Trends Neurosci. 22, 97–99.

    Article  CAS  PubMed  Google Scholar 

  • Tellmann G. 2006 The E-Method: a highly accurate technique for gene-expression analysis. Nat. Methods 3, i–ii.

    Article  CAS  Google Scholar 

  • Trotta T., Porro C., Cianciulli A. and Panaro M. A. 2022 Beneficial effects of spirulina consumption on brain health. Nutrients 14, 676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang P.-C., Jury J., Söderholm J. D., Sherman P. M., McKay D. M. and Perdue M. H. 2006 Chronic psychological stress in rats induces intestinal sensitization to luminal antigens. Am. J. Pathol. 168, 104–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeganeh S., Teimouri M. and Amirkolaie A. K. 2015 Dietary effects of Spirulina platensis on hematological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss). Res. Vet. Sci. 101, 84–88.

    Article  PubMed  Google Scholar 

  • Yenari M. A., Liu J., Zheng Z., Vexler Z. S., Lee J. E. and Giffard R. G. 2005 Anti-apoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann. N. Y. Acad. Sci. 1053, 74–83.

    Article  CAS  PubMed  Google Scholar 

  • Yu E.-M., Yoshinaga T., Jalufka F. L., Ehsan H., Mark Welch D. B. and Kaneko G. 2021 The complex evolution of the metazoan HSP70 gene family. Sci. Rep. 11, 1–104.

    Article  Google Scholar 

  • Zahran W. E. and Emam M. A. 2018 Renoprotective effect of Spirulina platensis extract against nicotine-induced oxidative stress-mediated inflammation in rats. Phytomedicine 49, 106–110.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y. and Kutateladze T. 2018 Diet and the epigenome. Nat. Commun. 9, 3375.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The data on some parts of the research has been presented as an oral presentation at the 2nd International Eurasian Conference on Science, Engineering and Technology (EurasianSciEnTech 2020), Gaziantep, Turkey. Eda Koseli was supported by YÖK (Council of Higher Education) 100/200 Doctoral Research Fellowship Programme and TÜBİTAK (The Scientific and Technological Research Council of Turkey) 2211-C (National Ph.D. Scholarship Programme in the Priority Fields in Science and Technology). The authors are grateful to Dr Ozge Ardicli for her support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SENA ARDICLI.

Additional information

Corresponding editor: Durgadas P. Kasbekar

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ARDICLI, S., SEYIDOGLU, N., KOSELI, E. et al. Dietary intake of Spirulina platensis alters HSP70 gene expression profiles in the brain of rats in an experimental model of mixed stress. J Genet 101, 49 (2022). https://doi.org/10.1007/s12041-022-01388-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-022-01388-5

Keywords

Navigation